Skip to main content

Advertisement

Log in

Synergistic Effect of Glucagon-Like Peptide 2 (GLP-2) and of Key Growth Factors on the Proliferation of Cultured Rat Astrocytes. Evidence for Reciprocal Upregulation of the mRNAs for GLP-2 and IGF-I Receptors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The aim of this work was to determine whether the stimulating effect of glucagon-like peptide (GLP)-2 on astrocyte proliferation could be reinforced by proliferating substances, including growth factors such as EGF, platelet-derived growth factor, insulin-like growth factor type I (IGF-I) or a hormone such as insulin. Both DNA synthesis and astrocyte density, as well as the expression of c-Fos, Ki-67, proliferating cell nuclear antigen and glial fibrillary acidic proteins, were found to be higher in the presence of GLP-2 than in its absence. In an attempt to get a better understanding of this process, intracellular cyclic adenosine monophosphate (cAMP) production, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and the expression of GLP-2R and IGF-I receptor (IGF-IR) mRNAs were studied in response to growth factors. Our results indicate that, in the presence of different growth factors, GLP-2 does not increase cAMP production but raises ERK 1/2 phosphorylation. In addition, GLP-2R mRNA expression was increased by IGF-I, whilst mRNA expression of IGF-IR was higher in cells incubated with GLP-2 than in control cells. These results suggest for the first time that GLP-2 and several growth factors show synergistic effects on the proliferation of rat astrocytes, a process in which an enhanced expression of GLP-2R and IGF-IR may be involved, providing additional insights into the physiological role of this novel neuropeptide, specially during astroglial regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hartmann B, Johnsen AH, Orskov C, Adelhorst K, Thim L, Holst JJ (2000) Structure, measurement, and secretion of human glucagon-like peptide 2. Peptides 21:73–80

    Article  PubMed  CAS  Google Scholar 

  2. Burrin DG, Stoll B, Guan X, Cui L, Chang X, Holst JJ (2005) Glucagon-like peptide 2 dose-dependently activates intestinal cell survival and proliferation in neonatal piglets. Endocrinology 146:22–32

    Article  PubMed  CAS  Google Scholar 

  3. Velázquez E, Ruiz-Albusac JM, Blázquez E (2003) Glucagon-like peptide-2 stimulates the proliferation of cultured rat astrocytes. Eur J Biochem 270:3001–3009

    Article  PubMed  CAS  Google Scholar 

  4. Munroe DG, Gupta AK, Kooushesh F, Vyas TB, Rizkalla G, Wang H, Demchyshyn L, Yang Z, Kamboj RK, Chen H, McCallum K, Sumner-Smith M, Drucker DJ, Crivici A (1999) Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Proc Natl Acad Sci U S A 96:1569–1573

    Article  PubMed  CAS  Google Scholar 

  5. Bjerknes M, Cheng H (2001) Modulation of specific intestinal epithelial progenitors by enteric neurons. Proc Natl Acad Sci U S A 98:12497–12502

    Article  PubMed  CAS  Google Scholar 

  6. Yusta B, Huang L, Munroe D, Wolff G, Fantaske R, Sharma S, Demchyshyn L, Asa SL, Drucker DJ (2000) Enterocrine localization of GLP-2 receptor expression. Gastroenterology 119:744–775

    Article  PubMed  CAS  Google Scholar 

  7. Nelson DW, Sharp JW, Brownfield MS, Raybould HE, Ney DM (2007) Localization and activation of GLP-2 receptors on vagal afferents in the rat. Endocrinology 148:1954–1962

    Article  PubMed  CAS  Google Scholar 

  8. Lovshin J, Estall J, Yusta B, Brown TJ, Drucker DJ (2001) Glucagon-like peptide (GLP)-2 action in the murine central nervous system is enhanced by elimination of GLP-1 receptor signaling. J Biol Chem 276:21489–21499

    Article  PubMed  CAS  Google Scholar 

  9. Koehler JA, Yusta B, Drucker DJ (2005) The HeLa cell glucagon-like peptide-2 receptor is coupled to regulation of apoptosis and ERK1/2 activation through divergent signalling pathways. Mol Endocrinol 19:459–473

    Article  PubMed  CAS  Google Scholar 

  10. Sams A, Hastrup S, Andersen M, Thim L (2006) Naturally occurring glucagons-like peptide-2 (GLP-2) receptors in human intestinal cell lines. Eur J Pharmacol 532:18–23

    Article  PubMed  CAS  Google Scholar 

  11. Rocha FG, Shen KR, Jasleen J, Tavakkolizadeh A, Zinner MJ, Whang EE, Ashley SW (2004) Glucagon-like peptide-2: divergent signalling pathways. J Surg Res 121:5–12

    Article  PubMed  CAS  Google Scholar 

  12. Jasleen J, Ashley SW, Shimoda N, Zinner MJ, Whang EE (2002) Glucagon-like peptide stimulates intestinal epithelial proliferation in vitro. Digest Dis Sci 47:1135–1140

    Article  PubMed  CAS  Google Scholar 

  13. Yusta B, Somwar R, Wang F, Munroe D, Grinstein S, Klip A, Drucker DJ (1999) Identification of glucagon-like peptide-2 (GLP-2)-activated signaling pathways in baby hamster kidney fibroblasts expressing the rat GLP-2 receptor. J Biol Chem 274:30459–30467

    Article  PubMed  CAS  Google Scholar 

  14. Burrin DG, Stoll B, Guan X, Cui L, Chang X, Hadsell D (2007) GLP-2 rapidly activates divergent intracellular signaling pathways involved in intestinal cell survival and proliferation in neonatal piglets. Am J Physiol Endocrinol Metab 292:E281–E291

    Article  PubMed  CAS  Google Scholar 

  15. Walsh NA, Yusta B, Dacambra MP, Anini Y, Drucker DJ, Brubaker PL (2003) Glucagon-like peptide-2 receptor activation in the rat intestinal mucosa. Endocrinology 144:4385–4392

    Article  PubMed  CAS  Google Scholar 

  16. Velázquez E, Santos A, Montes A, Blázquez E, Ruiz-Albusac JM (2006) 25-Hydroxycholesterol has a dual effect on the proliferation of cultured rat astrocytes. Neuropharmacology 51:229–237

    Article  PubMed  CAS  Google Scholar 

  17. Chomczynsky P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Google Scholar 

  18. Masur K, Schwartz F, Entschladen F, Niggemann B, Zaenker KS (2006) DPPIV inhibitors extend GLP-2 mediated tumour promoting effects on intestinal cancer cells. Regul Peptides 137:147–155

    Article  CAS  Google Scholar 

  19. Leiting B, Pryor KAD, Wu JK, Marsilio F, Patel RA, Craik CS, Ellman JA, Cummings RT, Thornberry NA (2003) Catalytic properties and inhibition of praline-specific dipeptidyl peptidases II, IV and VII. Biochem J 371:525–553

    Article  PubMed  CAS  Google Scholar 

  20. Sigalet DL, Wallace LE, Holst JJ, Martin GR, Kaji T, Tanaka H, Sharkey KA (2007) Enteric neural pathways mediate the anti-inflammatory actions of glucagons-like peptide 2. Am J Physiol Garointest Liver Physiol 293:G211–G221

    Article  CAS  Google Scholar 

  21. Scholzen T, Gerdes J (2000) The ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322

    Article  PubMed  CAS  Google Scholar 

  22. Dubé PE, Forse CL, Bahrami J, Brubaker PL (2006) The essential role of insulin-like growth factor-1 in the intestinal tropic effects of glucagon-like peptide-2 in mice. Gastroenterology 131:589–605

    Article  PubMed  CAS  Google Scholar 

  23. Pereira-Fantani P, Thomas S, Bines JE (2007) Insulin-like growth factor-I is not essential for the intestinal trophic effects of glucagon-like pepide-2. Gastroenterology 133:369–370

    Article  Google Scholar 

  24. Fukunaga T, Sasaki M, Araki Y, Okamoto T, Yasuoka T, Tsujikawa T, Fujiyama Y, Bamba T (2003) Effects of the soluble fibre pectin on intestinal cell proliferation, fecal short chain fatty acid production and microbial population. Digestion 67:42–49

    Article  PubMed  CAS  Google Scholar 

  25. Prosperi E (1997) Multiple roles of the proliferating cell nuclear antigen: DNA replication, repair and cell cycle control. Prog Cell Cycle Res 3:193–210

    PubMed  CAS  Google Scholar 

  26. Chance WT, Sheriff S, Dayal R, Friend LA, Thomas I, Balasubramaniam A (2006) The role of polyamines in glucagon-like peptide-2 prevention of TPN-induced gut hypoplasia. Peptides 27:883–892

    Article  PubMed  CAS  Google Scholar 

  27. Tsai C-H, Hill M, Asa SL, Brubaker PL, Drucker DJ (1997) Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. Am J Physiol Endocrinol and Metab 273:E77–E84

    CAS  Google Scholar 

  28. Boushey RP, Yusta B, Drucker DJ (1999) Glucagon-like peptide 2 decreases mortality and reduces the severity of indomethacin-induced murine enteritis. Am J Physiol Endocrinol Metab 277:E937–E947

    CAS  Google Scholar 

  29. Guo W, Wang H, Watanabe M, Shimizu K, Zou S, LaGraice SC, Wei F, Dubner R, Ren K (2007) Glial–cytokine–neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 27:6006–6018

    Article  PubMed  CAS  Google Scholar 

  30. Pollenz RS, McCarthy KD (1986) Analysis of cyclic AMP-dependent changes in intermediate filament protein phosphorylation and cell morphology in cultured astroglia. J Neurochem 47:9–17

    Article  PubMed  CAS  Google Scholar 

  31. Goldman JE, Abramson B (1990) Cyclic AMP-induced shape changes of astrocytes are accompanied by rapid depolymerization of actin. Brain Res 528:189–196

    Article  PubMed  CAS  Google Scholar 

  32. Drucker DJ, DeForest L, Brubaker PL (1997) Intestinal response to growth factors administered alone or in combination with human [Gly2]glucagon-like peptide 2. Am J Physiol Gastrintest Liver Physiol 273:G1252–G1262

    CAS  Google Scholar 

  33. Kitchen PA, Goodlad RA, Fitzgerald AJ, Mandir N, Ghatei MA, Bloom SR, Berlanga-Acosta J, Playford RJ, Forbes A, Walters JR (2005) Intestinal growth in parenterally-fed rats induced by the combined effects of glucagon-like peptide 2 and epidermal growth factor. J Parenter Enteral Nutr 29:248–254

    Article  CAS  Google Scholar 

  34. Estall JL, Koehler JA, Yusta B, Drucker DJ (2005) The GLP-2R C-terminus modulates β–arrestin-2 association, but is dispensable for ligand-induced desensitization, endocytosis, and G-protein-dependent effector activation. J Biol Chem 280:22124–22134

    Article  PubMed  CAS  Google Scholar 

  35. Lovshin J, Huang Q, Seaberg P, Brubaker PL, Drucker DJ (2004) Extrahypotalamic expression of the glucagon-like peptide-2 receptor is coupled to reduction of glutamate-induced cell death in cultured hippocampal cells. Endocrinology 145:3495–3506

    Article  PubMed  CAS  Google Scholar 

  36. Tang-Christensen M, Larsen PJ, Thulesen J, Rømer J, Vrang N (2000) The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med 6:802–807

    Article  PubMed  CAS  Google Scholar 

  37. Petersen YM, Hartmann B, Holst JJ, Le Huerou-Luron I, Bjornvad CR, Sangild PT (2003) Introduction of enteral food increases plasma GLP-2 and decreases GLP-2R receptor mRNA abundance during pig development. J Nutr 133:1781–1786

    PubMed  CAS  Google Scholar 

  38. Estall JL, Yusta B, Drucker DJ (2004) Lipid raft-dependent glucagon-like peptide-2 receptor trafficking occurs independently of agonist-induced desensitization. Mol Biol Cell 15:3673–3687

    Article  PubMed  CAS  Google Scholar 

  39. Buteau J, Foisy S, Prentki M (2003) Glucagon-like peptide-1 induces pancreatic β–cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 52:124–132

    Article  PubMed  CAS  Google Scholar 

  40. Hare KJ, Hartmann B, Kissow H, Holst JJ, Poulsen SS (2007) The intestinotrophic peptide, glp-2, counteracts intestinal atrophy in mice induced by the epidermal growth factor receptor inhibitor, gefitinib. Clin Cancer Res 13:5170–5175

    Article  PubMed  CAS  Google Scholar 

  41. Bulut K, Meier JJ, Ansorge N, Felderbauer P, Schmitz F, Hoffmann P, Schmidt WE, Gallwitz B (2004) Glucagon-like peptide-2 improves intestinal wound healing through induction of epithelial cell migration in vivo—evidence for a TGF-β-mediated effect. Regul Pept 121:137–143

    Article  PubMed  CAS  Google Scholar 

  42. Bulut K, Pennartz C, Felderbauer P, Meier JJ, Banasch M, Bulut D, Schmitz F, Schmidt WE, Hoffmann P (2008) Glucagon like peptide-2 induces intestinal restitution through VEGF release from subepithelial myofibroblasts. Eur J Pharmacol 578:279–285

    Article  PubMed  CAS  Google Scholar 

  43. Orskov C, Hartmann B, Poulsen SS, Thulesen J, Hare KJ, Holst JJ (2005) GLP-2 stimulates colonic growth via KGF, released by subepithelial myofibroblasts with GLP-2 receptors. Regul Pept 124:5–12

    Article  CAS  Google Scholar 

  44. McDonagh SC, Lee J, Izzo A, Brubaker PL (2007) Role of glial cell-line derived neurotropic factor family receptor α2 in the actions of the glucagon-like peptides on the murine intestine. Am J Physiol Gastrointest Liver Physiol 293:G461–G468

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Pedro Barrio for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Miguel Ruiz-Albusac.

Additional information

This study was supported by grants from the Ministerio de Educación y Ciencia, Fondo de Investigación Sanitaria de la Seguridad Social (FIS), Comunidad de Madrid, and from the CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velázquez, E., Blázquez, E. & Ruiz-Albusac, J.M. Synergistic Effect of Glucagon-Like Peptide 2 (GLP-2) and of Key Growth Factors on the Proliferation of Cultured Rat Astrocytes. Evidence for Reciprocal Upregulation of the mRNAs for GLP-2 and IGF-I Receptors. Mol Neurobiol 40, 183–193 (2009). https://doi.org/10.1007/s12035-009-8080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-009-8080-1

Keywords

Navigation