Skip to main content

Advertisement

Log in

Aβ Toxicity in Alzheimer's Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer's Disease (AD), the most common age-related neurodegenerative disorder, is characterized by progressive cognitive decline, synaptic loss, the formation of extracellular β-amyloid plaques and intracellular neurofibrillary tangles, and neuronal cell death. Despite the massive neuronal loss in the ‘late stage’ of disease, dendritic spine loss represents the best pathological correlate to the cognitive impairment in AD patients. The ‘amyloid hypothesis’ of AD recognizes the Aβ peptide as the principal player in the pathological process. Many lines of evidence point out to the neurotoxicity of Aβ, highlighting the correlation between soluble Aβ oligomer accumulation, rather than insoluble Aβ fibrils and disease progression. Pathological increase of Aβ in AD brains, resulting from an imbalance between its production, aggregation and clearance, might target mitochondrial function promoting a progressive synaptic impairment. The knowledge of the exact mechanisms by which Aβ peptide impairs neuronal function will help us to design new pharmacological tools for preventing AD neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arendt T (2009) Synaptic degeneration in Alzheimer′s disease. Acta Neuropathol 118:167–179

    Article  PubMed  Google Scholar 

  2. Wasling P, Daborg J, Riebe I, Andersson M, Portelius E, Blennow K, Hanse E, Zetterberg H (2009) Synaptic retrogenesis and amyloid-beta in Alzheimer's disease. J Alzheimers Dis 16:1–14

    PubMed  CAS  Google Scholar 

  3. Thind K, Sabbagh MN (2007) Pathological correlates of cognitive decline in Alzheimer's disease. Panminerva Med 49:191–195

    PubMed  CAS  Google Scholar 

  4. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer's disease. Lancet 368:387–403

    Article  PubMed  CAS  Google Scholar 

  5. Elias MF, Beiser A, Wolf PA, Au R, White RF, D'Agostino RB (2000) The preclinical phase of Alzheimer disease: a 22-year prospective study of the Framingham cohort. Arch Neurol 57:808–813

    Article  PubMed  CAS  Google Scholar 

  6. Kawas CH, Corrada MM, Brookmeyer R, Morrison A, Resnick SM, Zonderman A, Arenberg D (2003) Visual memory predicts Alzheimer's disease more than a decade before diagnosis. Neurology 60:1089–1093

    PubMed  CAS  Google Scholar 

  7. West MJ, Kawas CH, Stewart WF, Rudow GL, Troncoso JC (2004) Hippocampal neurons in pre-clinical Alzheimer's disease. Neurobiol Aging 25:1205–1212

    Article  PubMed  CAS  Google Scholar 

  8. Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, Small GW (2000) Patterns of brain activation in people at risk for Alzheimer′s disease. N Engl J Med 343:450–456

    Article  PubMed  CAS  Google Scholar 

  9. Zhou Y, Dougherty JH Jr, Hubner KF, Bai B, Cannon RL, Hutson RK (2008) Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer's disease and mild cognitive impairment. Alzheimers Dement 4:265–270

    Article  PubMed  Google Scholar 

  10. Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68:1501–1508

    Article  PubMed  CAS  Google Scholar 

  11. Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67

    Article  PubMed  CAS  Google Scholar 

  12. Ferrer I, Guionnet N, Cruz-Sánchez F, Tuñón T (1990) Neuronal alterations in patients with dementia: a Golgi study on biopsy samples. Neurosci Lett 114:11–16

    Article  PubMed  CAS  Google Scholar 

  13. Lanz TA, Carter DB, Merchant KM (2003) Dendritic spine loss in the hippocampus of young PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype. Neurobiol Dis 13:246–253

    Article  PubMed  CAS  Google Scholar 

  14. Olson MI, Shaw CM (1969) Presenile dementia and Alzheimer's disease in mongolism. Brain 92:147–156

    Article  PubMed  CAS  Google Scholar 

  15. Tanzi RE, Gussella JF, Walkins PC, Bruns GA, St. George-Hyslop P, Van Keuren ML, Patterson D et al (1987) Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235:880–884

    Article  PubMed  CAS  Google Scholar 

  16. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349:704–706

    Article  PubMed  CAS  Google Scholar 

  17. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375:754–760

    Article  PubMed  CAS  Google Scholar 

  18. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K, Crowley AC, Fu Y-H, Guenette SY, Galas D, Nemens E, Wijsman EM, Bird TD, Schellenberg GD, Tanzi RE (1995) Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269:973–977

    Article  PubMed  CAS  Google Scholar 

  19. Strittmatter WJ, Sauders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981

    Article  PubMed  CAS  Google Scholar 

  20. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630

    Article  PubMed  CAS  Google Scholar 

  21. Kowalska A, Florczak J, Pruchnik-Wolinska D, Kraszewski A, Wender M (1998) Apolipoprotein E genotypes in sporadic early and late-onset Alzheimer's disease. Arch Immunol Ther Exp 46:177–181

    CAS  Google Scholar 

  22. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261:921–923

    Article  PubMed  CAS  Google Scholar 

  23. Kowalska A, Wiechmann I, Walter H (1998) Genetic variability of apolipoprotein E in a Polish population. Hum Biol 70:1093–1099

    PubMed  CAS  Google Scholar 

  24. Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R (2007) How common are the “common” neurologic disorders? Neurology 68:326–337

    Article  PubMed  CAS  Google Scholar 

  25. Drachman DA (2006) Aging of the brain, entropy, and Alzheimer disease. Neurology 67:1340–1352

    Article  PubMed  CAS  Google Scholar 

  26. Gandy S, Duff K (2000) Post-menopausal estrogen deprivation and Alzheimer's disease. Exp Gerontol 35:503–511

    Article  PubMed  CAS  Google Scholar 

  27. Manly JJ, Merchant CA, Jacobs DM, Small SA, Bell K, Ferin M, Mayeux R (2000) Endogenous estrogen levels and Alzheimer's disease among postmenopausal women. Neurology 54:833–837

    PubMed  CAS  Google Scholar 

  28. Henderson VW (2009) Estrogens, episodic memory, and Alzheimer's disease: a critical update. Semin Reprod Med 27:283–293

    Article  PubMed  CAS  Google Scholar 

  29. Guo Z, Cupples LA, Kurz A, Auerbach SH, Volicer L, Chui H, Green RC, Sadovnick AD, Duara R, DeCarli C, Johnson K, Go RC, Growdon JH, Haines JL, Kukull WA, Farrer LA (2000) Head injury and the risk of AD in the MIRAGE study. Neurology 54:1316–1323

    PubMed  CAS  Google Scholar 

  30. Plassman BL, Havlik RJ, Steffens DC, Helms MJ, Newman TN, Drosdick D, Phillips C, Gau BA, Welsh-Bohmer KA, Burke JR, Guralnik JM, Breitner JC (2000) Documented head injury in early adulthood and risk of Alzheimer's disease and other dementias. Neurology 55:1158–1166

    PubMed  CAS  Google Scholar 

  31. Jellinger KA, Paulus W, Wrocklage C, Litvan I (2001) Effects of closed traumatic brain injury and genetic factors on the development of Alzheimer's disease. Eur J Neurol 8:707–710

    Article  PubMed  CAS  Google Scholar 

  32. Breteler MM (2000) Vascular risk factors for Alzheimer's disease: an epidemiologic perspective. Neurobiol Aging 21:153–160

    Article  PubMed  CAS  Google Scholar 

  33. Launer LJ, Ross GW, Petrovitch H, Masaki K, Foley D, White LR, Havlik RJ (2000) Midlife blood pressure and dementia: the Honolulu-Asia Aging Study. Neurobiol Aging 21:49–55

    Article  PubMed  CAS  Google Scholar 

  34. Petrovitch H, White LR, Izmirilian G, Ross GW, Havlik RJ, Markesbery W, Nelson J, Davis DG, Hardman J, Foley DJ, Launer LJ (2000) Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS. Honolulu-Asia Aging Study. Neurobiol Aging 21:57–62

    PubMed  CAS  Google Scholar 

  35. Kivipelto M, Helkala EL, Hänninen T, Laakso MP, Hallikainen M, Alhainen K, Soininen H, Tuomilehto J, Nissinen A (2001) Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study. Neurology 56:1683–1689

    PubMed  CAS  Google Scholar 

  36. Scarmeas N, Luchsinger JA, Schupf N, Brickman AM, Cosentino S, Tang MX, Stern Y (2009) Physical activity, diet, and risk of Alzheimer disease. JAMA 302:627–637

    Article  PubMed  CAS  Google Scholar 

  37. Orgogozo JM, Dartigues JF, Lafont S, Letenneur L, Commenges D, Salamon R, Renaud S, Breteler MB (1997) Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Rev Neurol (Paris) 153:185–192

    CAS  Google Scholar 

  38. Hall CB, Lipton RB, Sliwinski M, Katz MJ, Derby CA, Verghese J (2009) Cognitive activities delay onset of memory decline in persons who develop dementia. Neurology 73:356–361

    Article  PubMed  CAS  Google Scholar 

  39. Harold D, Abraham R, Hollingworth P et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet 41:1088–1093

    Article  PubMed  CAS  Google Scholar 

  40. Lambert JC, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41:1094–1099

    Article  PubMed  CAS  Google Scholar 

  41. Seshadri S, Fitzpatrick AL, Ikram MA et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. J Am Med Assoc 303:1832–1840

    Article  CAS  Google Scholar 

  42. Hollingworth P, Harold D, Sims R et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet 43:429–435

    Article  PubMed  CAS  Google Scholar 

  43. Naj AC, Jun G, Beecham GW et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat Genet 43:436–441

    Article  PubMed  CAS  Google Scholar 

  44. De Strooper B, Annaert W (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 113:1857–1870

    PubMed  Google Scholar 

  45. Vetrivel KS, Thinakaran G (2006) Amyloidogenic processing of beta-amyloid precursor protein in intracellular compartments. Neurology 66:S69–S73

    Article  PubMed  CAS  Google Scholar 

  46. Haass C, Hung AY, Selkoe DJ (1991) Processing of b-amyloid precursor protein in microglia and astrocytes favors a localization in internal vesicles over constitutive secretion. J Neurosci 11:3783–3793

    PubMed  CAS  Google Scholar 

  47. Allinson TM, Parkin ET, Turner AJ, Hooper NM (2003) ADAMs family members as amyloid precursor protein α-secretases. J Neurosci Res 74:342–352

    Article  PubMed  CAS  Google Scholar 

  48. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) β-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  PubMed  CAS  Google Scholar 

  49. Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, Gloger IS, Murphy KE, Southan CD, Ryan DM, Smith TS, Simmons DL, Walsh FS, Dingwall C, Christie G (1999) Identification of a novel aspartic protease (Asp 2) as β-secretase. Mol Cell Neurosci 14:419–427

    Article  PubMed  CAS  Google Scholar 

  50. Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, John V (1999) Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 402:537–540

    Article  PubMed  CAS  Google Scholar 

  51. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398:513–517

    Article  PubMed  CAS  Google Scholar 

  52. Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T, Supala A, Levesque L, Yu H, Yang DS, Holmes E, Milman P, Liang Y, Zhang DM, Xu DH, Sato C, Rogaev E, Smith M, Janus C, Zhang Y, Aebersold R, Farrer LS, Sorbi S, Bruni A, Fraser P, St George-Hyslop P (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature 407:48–54

    Article  PubMed  CAS  Google Scholar 

  53. Levitan D, Lee J, Song L, Manning R, Wong G, Parker E, Zhang L (2001) PS1 N- and C-terminal fragments form a complex that functions in APP processing and Notch signaling. Proc Natl Acad Sci USA 98:12186–12190

    Article  PubMed  CAS  Google Scholar 

  54. Steiner H, Winkler E, Edbauer D, Prokop S, Basset G, Yamasaki A, Kostka M, Haass C (2002) PEN-2 is an integral component of the γ-secretase complex required for coordinated expression of presenilin and nicastrin. J Biol Chem 277:39062–39065

    Article  PubMed  CAS  Google Scholar 

  55. Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32:4693–4697

    Article  PubMed  CAS  Google Scholar 

  56. Younkin SG (1998) The role of Aβ 42 in Alzheimer's disease. J Physiol Paris 92:289–292

    Article  PubMed  CAS  Google Scholar 

  57. Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, LeBlanc A, Smith D, Rigby M, Shearman MS, Clarke EE, Zheng H, Van Der Ploeg LH, Ruffolo SC, Thornberry NA, Xanthoudakis S, Zamboni RJ, Roy S, Nicholson DW (1999) Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 97:395–406

    Article  PubMed  CAS  Google Scholar 

  58. LeBlanc A, Liu H, Goodyer C, Bergeron C, Hammond J (1999) Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer's disease. J Biol Chem 274:23426–23436

    Article  PubMed  CAS  Google Scholar 

  59. Pellegrini L, Passer BJ, Tabaton M, Ganjei JK, D'Adamio L (1999) Alternative, non-secretase processing of Alzheimer's beta-amyloid precursor protein during apoptosis by caspase-6 and -8. J Biol Chem 274:21011–21016

    Article  PubMed  CAS  Google Scholar 

  60. Weidemann A, Paliga K, Dürrwang U, Reinhard FB, Schuckert O, Evin G, Masters CL (1999) Proteolytic processing of the Alzheimer's disease amyloid precursor protein within its cytoplasmic domain by caspase-like proteases. J Biol Chem 274:5823–5829

    Article  PubMed  CAS  Google Scholar 

  61. Tesco G, Koh YH, Tanzi RE (2003) Caspase activation increases beta-amyloid generation independently of caspase cleavage of the beta-amyloid precursor protein (APP). J Biol Chem 278:46074–46080

    Article  PubMed  CAS  Google Scholar 

  62. Carson JA, Turner AJ (2002) Beta-amyloid catabolism: roles for neprilysin (NEP) and other metallopeptidases? J Neurochem 81:1–8

    Article  PubMed  CAS  Google Scholar 

  63. Reddy PH, Manczak M, Mao P, Calkins MJ, Reddy AP, Shirendeb U (2010) Amyloid-beta and mitochondria in aging and Alzheimer's disease: implications for synaptic damage and cognitive decline. J Alzheimers Dis 20:S499–S512

    PubMed  Google Scholar 

  64. Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB, Selkoe DJ (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325

    Article  PubMed  CAS  Google Scholar 

  65. Aydin D, Weyer SW, Müller UC (2011) Functions of the APP gene family in the nervous system: insights from mouse models. Exp Brain Res Sep 20 [Epub ahead of print]

  66. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R (2003) APP processing and synaptic function. Neuron 37:925–937

    Article  PubMed  CAS  Google Scholar 

  67. Lesné S, Ali C, Gabriel C, Croci N, MacKenzie ET, Glabe CG, Plotkine M, Marchand-Verrecchia C, Vivien D, Buisson A (2005) NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production. J Neurosci 25:9367–9377

    Article  PubMed  CAS  Google Scholar 

  68. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA (2005) Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25:7709–7717

    Article  PubMed  CAS  Google Scholar 

  69. Plant LD, Boyle JP, Smith IF, Peers C, Pearson HA (2003) The production of amyloid beta peptide is a critical requirement for the viability of central neurons. J Neurosci 23:5531–5535

    PubMed  CAS  Google Scholar 

  70. Puzzo D, Privitera L, Fa' M, Staniszewski A, Hashimoto G, Aziz F, Sakurai M, Ribe EM, Troy CM, Mercken M, Jung SS, Palmeri A, Arancio O (2011) Endogenous amyloid-β is necessary for hippocampal synaptic plasticity and memory. Ann Neurol 69:819–830

    Article  PubMed  CAS  Google Scholar 

  71. Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases protein production. Nature 360:672–674

    Article  PubMed  CAS  Google Scholar 

  72. Haass C, Lemere CA, Capell A, Citron M, Seubert P, Schenk D, Lannfelt L, Selkoe DJ (1995) The Swedish mutation causes early-onset Alzheimer's disease by β-secretase cleavage within the secretory pathway. Nature Med 1:1291–1296

    Article  PubMed  CAS  Google Scholar 

  73. Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M, Haass C, Fahrenholz F (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci USA 96:3922–3927

    Article  PubMed  CAS  Google Scholar 

  74. Parvathy S, Hussain I, Karran EH, Turner AJ, Hooper NM (1999) Cleavage of Alzheimer's amyloid precursor protein by alpha-secretase occurs at the surface of neuronal cells. Biochemistry 38:9728–9734

    Article  PubMed  CAS  Google Scholar 

  75. Skovronsky DM, Moore DB, Milla ME, Doms RW, Lee VM (2000) Protein kinase C-dependent alpha-secretase competes with beta-secretase for cleavage of amyloid-beta precursor protein in the trans-golgi network. J Biol Chem 275:2568–2575

    Google Scholar 

  76. Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Näslund J, Lannfelt L (2001) The ‘Arctic’ APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nature Neurosci 4:887–893

    Article  PubMed  CAS  Google Scholar 

  77. Sahlin C, Lord A, Magnusson K, Englund H, Almeida CG, Greengard P, Nyberg F, Gouras GK, Lannfelt L, Nilsson LN (2007) The Arctic Alzheimer mutation favors intracellular amyloid-beta production by making amyloid precursor protein less available to alpha-secretase. J Neurochem 101:854–862

    Article  PubMed  CAS  Google Scholar 

  78. Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerrière A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T, Campion D (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genet 38:24–26

    Article  PubMed  CAS  Google Scholar 

  79. Cabrejo L, Guyant-Maréchal L, Laquerrière A, Vercelletto M, De la Fournière F, Thomas-Antérion C, Verny C, Letournel F, Pasquier F, Vital A, Checler F, Frebourg T, Campion D, Hannequin D (2006) Phenotype associated with APP duplication in five families. Brain 129:2966–2976

    Article  PubMed  Google Scholar 

  80. Gyure KA, Durham R, Stewart WF, Smialek JE, Troncoso JC (2001) Intraneuronal Aβ-amyloid precedes development of amyloid plaques in Down syndrome. Arch Pathol Lab Med 125:489–492

    PubMed  CAS  Google Scholar 

  81. Mori C, Spooner ET, Wisniewsk KE, Wisniewski TM, Yamaguch H, Saido TC, Tolan DR, Selkoe DJ, Lemere CA (2002) Intraneuronal Aβ42 accumulation in Down syndrome brain. Amyloid 9:88–102

    PubMed  CAS  Google Scholar 

  82. Selkoe DJ, Podlisny MB (2002) Deciphering the genetic basis of Alzheimer's disease. Annu Rev Genomics Hum Genet 3:67–99

    Article  PubMed  CAS  Google Scholar 

  83. Glenner GG, Wong CW (1984) Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  PubMed  CAS  Google Scholar 

  84. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  85. Müller WE, Eckert A, Kurz C, Eckert GP, Leuner K (2010) Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer's disease—therapeutic aspects. Mol Neurobiol 41:159–171

    Article  PubMed  CAS  Google Scholar 

  86. Fändrich M (2007) On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell Mol Life Sci 64:2066–2078

    Article  PubMed  CAS  Google Scholar 

  87. Jakob-Roetne R, Jacobsen H (2009) Alzheimer's disease: from pathology to therapeutic approaches. Angew Chem Int Ed Engl 48:3030–3059

    Article  PubMed  CAS  Google Scholar 

  88. Hardy JA, Higgins GA (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  PubMed  CAS  Google Scholar 

  89. Wang J, Dickson DW, Trojanowski JQ, Lee VM (1999) The levels of soluble versus insoluble brain Abeta distinguish Alzheimer's disease from normal and pathologic aging. Exp Neurol 158:328–337

    Article  PubMed  CAS  Google Scholar 

  90. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol 46:860–866

    Article  PubMed  CAS  Google Scholar 

  91. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  PubMed  CAS  Google Scholar 

  92. Fändrich M, Schmidt M, Grigorieff N (2011) Recent progress in understanding Alzheimer's b-amyloid structures. Trends Biochem Sci 36:338–345

    Article  PubMed  CAS  Google Scholar 

  93. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-β in Alzheimer's disease. Nat Rev Neurosci 8:499–509

    Article  PubMed  CAS  Google Scholar 

  94. Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, Greenfield JP, Haroutunian V, Buxbaum JD, Xu H, Greengard P, Relkin NR (2000) Intraneuronal Aβ42 accumulation in human brain. Am J Pathol 156:15–20

    Article  PubMed  CAS  Google Scholar 

  95. Steinerman JR, Irizarry M, Scarmeas N, Raju S, Brandt J, Albert M, Blacker D, Hyman B, Stern Y (2008) Distinct pools of Aβ in Alzheimer's disease brain: a clinical–pathological study. Arch Neurol 65:906–912

    Article  PubMed  Google Scholar 

  96. Wirths O, Multhaup G, Czech C, Blanchard V, Moussaoui S, Tremp G, Pradier L, Beyreuther K, Bayer TA (2001) Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 306:116–120

    Article  PubMed  CAS  Google Scholar 

  97. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39:409–421

    Article  PubMed  CAS  Google Scholar 

  98. Knobloch M, Konietzko U, Krebs DC, Nitsch RM (2007) Intracellular Abeta and cognitive deficits precede beta-amyloid deposition in transgenic arcAbeta mice. Neurobiol Aging 28:1297–306

    Article  PubMed  CAS  Google Scholar 

  99. Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875

    Article  PubMed  CAS  Google Scholar 

  100. Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J Neurosci 27:796–807

    Article  PubMed  CAS  Google Scholar 

  101. Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, Beal MF, Xu H, Greengard P, Gouras GK (2002) Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 161:1869–1879

    Article  PubMed  CAS  Google Scholar 

  102. Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, Klein WL (2004) Synaptic targeting by Alzheimer's-related amyloid beta oligomers. J Neurosci 24:10191–10200

    Article  PubMed  CAS  Google Scholar 

  103. Capetillo-Zarate E, Gracia L, Tampellini D, Gouras GK. (2012) Intraneuronal Aβ accumulation, amyloid plaques, and synapse pathology in Alzheimer's disease. Neurodegener Dis Jan 21 [Epub ahead of print]

  104. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058

    PubMed  CAS  Google Scholar 

  105. Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, Yoo J, Ho KO, Yu GQ, Kreitzer A, Finkbeiner S, Noebels JL, Mucke L (2007) Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron 55:697–711

    Article  PubMed  CAS  Google Scholar 

  106. Buckingham SD, Jones AK, Brown LA, Sattelle DB (2009) Nicotinic acetylcholine receptor signalling: roles in Alzheimer's disease and amyloid neuroprotection. Pharmacol Rev 61:39–61

    Article  PubMed  CAS  Google Scholar 

  107. Geerts H, Grossberg GT (2006) Pharmacology of acetylcholinesterase inhibitors and N-methyl-d-aspartate receptors for combination therapy in the treatment of Alzheimer's disease. J Clin Pharmacol 46:8S–16S

    Article  PubMed  CAS  Google Scholar 

  108. Terry AV Jr, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827

    Article  PubMed  CAS  Google Scholar 

  109. Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    Article  PubMed  CAS  Google Scholar 

  110. Wevers A, Monteggia L, Nowacki S, Bloch W, Schütz U, Lindstrom J, Pereira EF, Eisenberg H, Giacobini E, de Vos RA, Steur EN, Maelicke A, Albuquerque EX, Schröder H (1999) Expression of nicotinic acetylcholine receptor subunits in the cerebral cortex in Alzheimer's disease: histotopographical correlation with amyloid plaques and hyperphosphorylated-tau protein. Eur J Neurosci 11:2551–2565

    Article  PubMed  CAS  Google Scholar 

  111. Wang HY, Lee DH, D'Andrea MR, Peterson PA, Shank RP, Reitz AB (2000) Beta-Amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J Biol Chem 275:5626–5632

    Article  PubMed  CAS  Google Scholar 

  112. Garaschuk O, Schneggenburger R, Schirra C, Tempia F, Konnerth A (1996) Fractional Ca2+ currents through somatic and dendritic glutamate receptor channels of rat hippocampal CA1 pyramidal neurones. J Physiol 491:757–772

    PubMed  CAS  Google Scholar 

  113. Parameshwaran K, Dhanasekaran M, Suppiramaniam V (2008) Amyloid beta peptides and glutamatergic synaptic dysregulation. Exp Neurol 210:7–13

    Article  PubMed  CAS  Google Scholar 

  114. Kelly BL, Ferreira A (2006) beta-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-d-aspartate receptors in hippocampal neurons. J Biol Chem 281:28079–28089

    Article  PubMed  CAS  Google Scholar 

  115. Carette B, Poulain P, Delacourte A (1993) Electrophysiological effects of 25-35 amyloid-beta-protein on guinea-pig lateral septal neurons. Neurosci Lett 151:111–114

    Article  PubMed  CAS  Google Scholar 

  116. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8:1051–1058

    Article  PubMed  CAS  Google Scholar 

  117. Zhang Y, Kurup P, Xu J, Anderson GM, Greengard P, Nairn AC, Lombroso PJ (2011) Reduced levels of the tyrosine phosphatase STEP block beta amyloid-mediated GluA1/GluA2 receptor internalization. J Neurochem 119:664–672

    Article  PubMed  CAS  Google Scholar 

  118. D'Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D, Carrara P, Battistini L, Moreno S, Bacci A, Ammassari-Teule M, Marie H, Cecconi F (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease. Nat Neurosci 14:69–76

    Article  PubMed  CAS  Google Scholar 

  119. Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends Mol Med 14:45–53

    Article  PubMed  CAS  Google Scholar 

  120. Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, Xu HW, Stern D, McKhann G, Yan SD (2005) Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease. FASEB J 19:2040–2041

    PubMed  CAS  Google Scholar 

  121. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1349

    Google Scholar 

  122. Hansson Petersen CA, Alikhan N, Behbahani H, Wiehager B, Pavlov PF, Alafuzoff I, Leinonen V, Ito A, Winblad B, Glaser E, Ankarcrona M (2008) The amyloid betapeptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Nat Acad Sci USA 105:13145–13150

    Article  PubMed  CAS  Google Scholar 

  123. Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X (2008) Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci USA 105:19318–19323

    Article  PubMed  CAS  Google Scholar 

  124. Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. Hum Mol Genet 20:4515–4529

    Article  PubMed  CAS  Google Scholar 

  125. Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage. Hum Mol Genet 20:2495–2509

    Article  PubMed  CAS  Google Scholar 

  126. Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS (2010) Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Proc Natl Acad Sci USA 107:18670–18675

    Article  PubMed  CAS  Google Scholar 

  127. Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M (2010) Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141:859–871

    Article  PubMed  CAS  Google Scholar 

  128. Jiao S, Li Z (2011) Nonapoptotic function of BAD and BAX in long-term depression of synaptic transmission. Neuron 70:758–772

    Article  PubMed  CAS  Google Scholar 

  129. Eskelinen EL (2005) Maturation of autophagic vacuoles in mammalian cells. Autophagy 1:1–10

    Article  PubMed  CAS  Google Scholar 

  130. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  PubMed  CAS  Google Scholar 

  131. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Näslund J, Mathews PM, Cataldo AM, Nixon RA (2005) Macroautophagy—a novel beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J Cell Biol 171:87–98

    Article  PubMed  CAS  Google Scholar 

  132. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  PubMed  CAS  Google Scholar 

  133. Boland B, Smith DA, Mooney D, Jung SS, Walsh DM, Platt FM (2010) Macroautophagy is not directly involved in the metabolism of amyloid precursor protein. J Biol Chem 285:37415–37426

    Article  PubMed  CAS  Google Scholar 

  134. Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O'Kane CJ, Rubinsztein DC (2006) Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 15:433–442

    Article  PubMed  CAS  Google Scholar 

  135. Wang Y, Martinez-Vicente M, Krüger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM, Mandelkow E (2009) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18:4153–4170

    Article  PubMed  CAS  Google Scholar 

  136. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 285:13107–13120

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MDA is financially supported by PRIN 2009 (Projects for Research of National Interest) and by a grant from the Alzheimer's Association (NIRG-11-204588). FC is supported by the Telethon Foundation, the Italian Ministry of Health and the Italian Ministry of Research, through Ricerca Finalizzata, Ricerca Corrente and FIRB funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Cecconi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavallucci, V., D’Amelio, M. & Cecconi, F. Aβ Toxicity in Alzheimer's Disease. Mol Neurobiol 45, 366–378 (2012). https://doi.org/10.1007/s12035-012-8251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8251-3

Keywords

Navigation