Skip to main content
Log in

Functional Heterogeneity of Arcuate Nucleus Pro-Opiomelanocortin Neurons: Implications for Diverging Melanocortin Pathways

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Arcuate nucleus (ARC) pro-opiomelanocortin (POMC) neurons are essential regulators of food intake, energy expenditure, and glucose homeostasis. POMC neurons integrate several key metabolic signals that include neurotransmitters and hormones. The change in activity of POMC neurons is relayed to melanocortin receptors in distinct regions of the central nervous system. This review will summarize the role of leptin and serotonin receptors in regulating the activity of POMC neurons and provide a model in which different melanocortin pathways regulate energy and glucose homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Trust for America's Health TRWJF (2011) F as in fat: how obesity threatens America's future. Trust for America's Health, Washington (DC)

    Google Scholar 

  2. Hetherington AW, Ranson SW (1940) Hypothalamic lesions and adiposity in the rat. Anat Rec 78(2):149–172

    Article  Google Scholar 

  3. Debons AF, Silver L, Cronkite EP, Johnson HA, Brecher G, Tenzer D, Schwartz IL (1962) Localization of gold in mouse brain in relation to gold thioglucose obesity. Am J Physiol 202:743–750

    PubMed  CAS  Google Scholar 

  4. Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164(880):719–721

    Article  PubMed  CAS  Google Scholar 

  5. Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385(6612):165–168

    Article  PubMed  CAS  Google Scholar 

  6. Tsujii S, Bray GA (1989) Acetylation alters the feeding response to MSH and beta-endorphin. Brain Res Bull 23(3):165–169

    Article  PubMed  CAS  Google Scholar 

  7. Rossi M, Kim MS, Morgan DG, Small CJ, Edwards CM, Sunter D, Abusnana S, Goldstone AP, Russell SH, Stanley SA, Smith DM, Yagaloff K, Ghatei MA, Bloom SR (1998) A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology 139(10):4428–4431

    Article  PubMed  CAS  Google Scholar 

  8. Ludwig DS, Mountjoy KG, Tatro JB, Gillette JA, Frederich RC, Flier JS, Maratos-Flier E (1998) Melanin-concentrating hormone: a functional melanocortin antagonist in the hypothalamus. Am J Physiol 274(4 Pt 1):E627–633

    PubMed  CAS  Google Scholar 

  9. Hahn TM, Breininger JF, Baskin DG, Schwartz MW (1998) Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1(4):271–272

    Article  PubMed  CAS  Google Scholar 

  10. Nijenhuis WA, Oosterom J, Adan RA (2001) AgRP(83-132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol 15(1):164–171

    Article  PubMed  CAS  Google Scholar 

  11. Tota MR, Smith TS, Mao C, MacNeil T, Mosley RT, Van der Ploeg LH, Fong TM (1999) Molecular interaction of agouti protein and agouti-related protein with human melanocortin receptors. Biochemistry 38(3):897–904

    Article  PubMed  CAS  Google Scholar 

  12. Chai BX, Neubig RR, Millhauser GL, Thompson DA, Jackson PJ, Barsh GS, Dickinson CJ, Li JY, Lai YM, Gantz I (2003) Inverse agonist activity of agouti and agouti-related protein. Peptides 24(4):603–609

    Article  PubMed  CAS  Google Scholar 

  13. Dube C (2007) Neuropeptide Y: potential role in recurrent developmental seizures. Peptides 28(2):441–446

    Article  PubMed  CAS  Google Scholar 

  14. Smith PA, Moran TD, Abdulla F, Tumber KK, Taylor BK (2007) Spinal mechanisms of NPY analgesia. Peptides 28(2):464–474

    Article  PubMed  CAS  Google Scholar 

  15. Clark JT, Kalra PS, Crowley WR, Kalra SP (1984) Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 115(1):427–429

    Article  PubMed  CAS  Google Scholar 

  16. Williams KW, Scott MM, Elmquist JK (2009) From observation to experimentation: leptin action in the mediobasal hypothalamus. Am J Clin Nutr 89(3):985S–990S

    Article  PubMed  CAS  Google Scholar 

  17. Williams KW, Scott MM, Elmquist JK (2011) Modulation of the central melanocortin system by leptin, insulin, and serotonin: co-ordinated actions in a dispersed neuronal network. Eur J Pharmacol 660(1):2–12

    Google Scholar 

  18. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U (1999) Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 5(9):1066–1070

    Article  PubMed  CAS  Google Scholar 

  19. Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LH (2000) Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 26(1):97–102

    Article  PubMed  CAS  Google Scholar 

  20. Fan W, Dinulescu DM, Butler AA, Zhou J, Marks DL, Cone RD (2000) The central melanocortin system can directly regulate serum insulin levels. Endocrinology 141(9):3072–3079

    Article  PubMed  CAS  Google Scholar 

  21. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88(1):131–141

    Article  PubMed  CAS  Google Scholar 

  22. Qian S, Chen H, Weingarth D, Trumbauer ME, Novi DE, Guan X, Yu H, Shen Z, Feng Y, Frazier E, Chen A, Camacho RE, Shearman LP, Gopal-Truter S, MacNeil DJ, Van der Ploeg LH, Marsh DJ (2002) Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol Cell Biol 22(14):5027–5035

    Article  PubMed  CAS  Google Scholar 

  23. Luquet S, Perez FA, Hnasko TS, Palmiter RD (2005) NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310(5748):683–685

    Article  PubMed  CAS  Google Scholar 

  24. Luquet S, Phillips CT, Palmiter RD (2007) NPY/AgRP neurons are not essential for feeding responses to glucoprivation. Peptides 28(2):214–225

    Article  PubMed  CAS  Google Scholar 

  25. Gropp E, Shanabrough M, Borok E, Xu AW, Janoschek R, Buch T, Plum L, Balthasar N, Hampel B, Waisman A, Barsh GS, Horvath TL, Bruning JC (2005) Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci 8(10):1289–1291

    Article  PubMed  CAS  Google Scholar 

  26. Aponte Y, Atasoy D, Sternson SM (2011) AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 14(3):351–355

    Article  PubMed  CAS  Google Scholar 

  27. Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121(4):1424–1428

    Article  PubMed  CAS  Google Scholar 

  28. Schwartz MW, Porte D Jr (2005) Diabetes, obesity, and the brain. Science 307(5708):375–379

    Article  PubMed  CAS  Google Scholar 

  29. Woods SC, Seeley RJ, Porte D Jr, Schwartz MW (1998) Signals that regulate food intake and energy homeostasis. Science 280(5368):1378–1383

    Article  PubMed  CAS  Google Scholar 

  30. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, Xu C, Vianna CR, Balthasar N, Lee CE, Elmquist JK, Cowley MA, Lowell BB (2007) Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449(7159):228–232

    Article  PubMed  CAS  Google Scholar 

  31. Pocai A, Obici S, Schwartz GJ, Rossetti L (2005) A brain-liver circuit regulates glucose homeostasis. Cell Metab 1(1):53–61

    Article  PubMed  CAS  Google Scholar 

  32. Zhou L, Sutton GM, Rochford JJ, Semple RK, Lam DD, Oksanen LJ, Thornton-Jones ZD, Clifton PG, Yueh CY, Evans ML, McCrimmon RJ, Elmquist JK, Butler AA, Heisler LK (2007) Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways. Cell Metab 6(5):398–405

    Article  PubMed  CAS  Google Scholar 

  33. Saper CB, Chou TC, Elmquist JK (2002) The need to feed: homeostatic and hedonic control of eating. Neuron 36(2):199–211

    Article  PubMed  CAS  Google Scholar 

  34. Koob G (2000) Drug addiction. Neurobiol Dis 7(5):543–545

    Article  PubMed  CAS  Google Scholar 

  35. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P (1995) Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269(5223):546–549

    Article  PubMed  CAS  Google Scholar 

  36. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA, O'Rahilly S (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. New Engl J Med 341(12):879–884

    Article  PubMed  CAS  Google Scholar 

  37. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432

    Article  PubMed  CAS  Google Scholar 

  38. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84(3):491–495

    Article  PubMed  CAS  Google Scholar 

  39. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Wool EA, Monroe CA, Tepper RI (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83(7):1263–1271

    Article  PubMed  CAS  Google Scholar 

  40. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379(6566):632–635

    Article  PubMed  CAS  Google Scholar 

  41. Chua SC Jr, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, Leibel RL (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271(5251):994–996

    Article  PubMed  CAS  Google Scholar 

  42. Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM (1997) Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci U S A 94(16):8878–8883

    Article  PubMed  CAS  Google Scholar 

  43. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269(5223):543–546

    Article  PubMed  CAS  Google Scholar 

  44. Cohen P, Zhao C, Cai X, Montez JM, Rohani SC, Feinstein P, Mombaerts P, Friedman JM (2001) Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest 108(8):1113–1121

    PubMed  CAS  Google Scholar 

  45. Spiegelman BM, Flier JS (2001) Obesity and the regulation of energy balance. Cell 104(4):531–543

    Article  PubMed  CAS  Google Scholar 

  46. Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, Kenny CD, McGovern RA, Chua SC Jr, Elmquist JK, Lowell BB (2004) Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42(6):983–991

    Article  PubMed  CAS  Google Scholar 

  47. Hill JW, Elias CF, Fukuda M, Williams KW, Berglund ED, Holland WL, Cho YR, Chuang JC, Xu Y, Choi M, Lauzon D, Lee CE, Coppari R, Richardson JA, Zigman JM, Chua S, Scherer PE, Lowell BB, Bruning JC, Elmquist JK (2010) Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab 11(4):286–297

    Article  PubMed  CAS  Google Scholar 

  48. Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, Tang V, Kenny CD, Christiansen LM, White RD, Edelstein EA, Coppari R, Balthasar N, Cowley MA, Chua S Jr, Elmquist JK, Lowell BB (2006) Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49(2):191–203

    Article  PubMed  CAS  Google Scholar 

  49. Bingham NC, Anderson KK, Reuter AL, Stallings NR, Parker KL (2008) Selective loss of leptin receptors in the ventromedial hypothalamic nucleus results in increased adiposity and a metabolic syndrome. Endocrinology 149(5):2138–2148

    Article  PubMed  CAS  Google Scholar 

  50. van de Wall E, Leshan R, Xu AW, Balthasar N, Coppari R, Liu SM, Jo YH, MacKenzie RG, Allison DB, Dun NJ, Elmquist J, Lowell BB, Barsh GS, de Luca C, Myers MG Jr, Schwartz GJ, Chua SC Jr (2008) Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149(4):1773–1785

    Article  PubMed  Google Scholar 

  51. Scott MM, Williams KW, Rossi J, Lee CE, Elmquist JK (2011) Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J Clin Invest 121(6):2413–2421

    Article  PubMed  CAS  Google Scholar 

  52. Hayes MR, Skibicka KP, Leichner TM, Guarnieri DJ, DiLeone RJ, Bence KK, Grill HJ (2010) Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metabolism 11(1):77–83

    Article  PubMed  CAS  Google Scholar 

  53. Spanswick D, Smith MA, Groppi VE, Logan SD, Ashford ML (1997) Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390(6659):521–525

    Article  PubMed  CAS  Google Scholar 

  54. Spanswick D, Smith MA, Mirshamsi S, Routh VH, Ashford ML (2000) Insulin activates ATP-sensitive K + channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci 3(8):757–758

    Article  PubMed  CAS  Google Scholar 

  55. van den Top M, Lee K, Whyment AD, Blanks AM, Spanswick D (2004) Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat Neurosci 7(5):493–494

    Article  PubMed  Google Scholar 

  56. Cone RD, Cowley MA, Butler AA, Fan W, Marks DL, Low MJ (2001) The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord 25(Suppl 5):S63–67

    Article  PubMed  CAS  Google Scholar 

  57. Hill JW, Williams KW, Ye C, Luo J, Balthasar N, Coppari R, Cowley MA, Cantley LC, Lowell BB, Elmquist JK (2008) Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest 118(5):1796–1805

    Article  PubMed  CAS  Google Scholar 

  58. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411(6836):480–484

    Article  PubMed  CAS  Google Scholar 

  59. Qiu J, Fang Y, Ronnekleiv OK, Kelly MJ (2010) Leptin excites proopiomelanocortin neurons via activation of TRPC channels. J Neurosci 30(4):1560–1565

    Article  PubMed  CAS  Google Scholar 

  60. Tong Q, Ye CP, Jones JE, Elmquist JK, Lowell BB (2008) Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat Neurosci 11(9):998–1000

    Article  PubMed  CAS  Google Scholar 

  61. Al-Qassab H, Smith MA, Irvine EE, Guillermet-Guibert J, Claret M, Choudhury AI, Selman C, Piipari K, Clements M, Lingard S, Chandarana K, Bell JD, Barsh GS, Smith AJ, Batterham RL, Ashford ML, Vanhaesebroeck B, Withers DJ (2009) Dominant role of the p110β isoform of PI3K over p110α in energy homeostasis regulation by POMC and AgRP neurons. Cell Metab 10(5):343–354

    Article  PubMed  CAS  Google Scholar 

  62. Xu AW, Ste-Marie L, Kaelin CB, Barsh GS (2007) Inactivation of signal transducer and activator of transcription 3 in proopiomelanocortin (Pomc) neurons causes decreased pomc expression, mild obesity, and defects in compensatory refeeding. Endocrinology 148(1):72–80

    Article  PubMed  CAS  Google Scholar 

  63. Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, Banks AS, Lavery HJ, Haq AK, Maratos-Flier E, Neel BG, Schwartz MW, Myers MG Jr (2003) STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421(6925):856–859

    Article  PubMed  CAS  Google Scholar 

  64. Heisler LK, Jobst EE, Sutton GM, Zhou L, Borok E, Thornton-Jones Z, Liu HY, Zigman JM, Balthasar N, Kishi T, Lee CE, Aschkenasi CJ, Zhang CY, Yu J, Boss O, Mountjoy KG, Clifton PG, Lowell BB, Friedman JM, Horvath T, Butler AA, Elmquist JK, Cowley MA (2006) Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron 51(2):239–249

    Article  PubMed  CAS  Google Scholar 

  65. Sternson SM, Shepherd GM, Friedman JM (2005) Topographic mapping of VMH → arcuate nucleus microcircuits and their reorganization by fasting. Nat Neurosci 8(10):1356–1363

    Article  PubMed  CAS  Google Scholar 

  66. Vong L, Ye C, Yang Z, Choi B, Chua S Jr, Lowell BB (2011) Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71(1):142–154

    Article  PubMed  CAS  Google Scholar 

  67. Giorgetti M, Tecott LH (2004) Contributions of 5-HT(2C) receptors to multiple actions of central serotonin systems. Eur J Pharmacol 488(1–3):1–9

    Article  PubMed  CAS  Google Scholar 

  68. Heisler LK, Cowley MA, Kishi T, Tecott LH, Fan W, Low MJ, Smart JL, Rubinstein M, Tatro JB, Zigman JM, Cone RD, Elmquist JK (2003) Central serotonin and melanocortin pathways regulating energy homeostasis. Ann N Y Acad Sci 994:169–174

    Article  PubMed  CAS  Google Scholar 

  69. Halford JC, Boyland EJ, Blundell JE, Kirkham TC, Harrold JA (2010) Pharmacological management of appetite expression in obesity. Nat Rev Endocrinol 6(5):255–269

    Article  PubMed  CAS  Google Scholar 

  70. Smith SR, Weissman NJ, Anderson CM, Sanchez M, Chuang E, Stubbe S, Bays H, Shanahan WR (2010) Multicenter, placebo-controlled trial of lorcaserin for weight management. New Engl J Med 363(3):245–256

    Article  PubMed  CAS  Google Scholar 

  71. Connolly HM, Crary JL, McGoon MD, Hensrud DD, Edwards BS, Edwards WD, Schaff HV (1997) Valvular heart disease associated with fenfluramine-phentermine. New Engl J Med 337(9):581–588

    Article  PubMed  CAS  Google Scholar 

  72. Nonogaki K, Strack AM, Dallman MF, Tecott LH (1998) Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nat Med 4(10):1152–1156

    Article  PubMed  CAS  Google Scholar 

  73. Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D (1995) Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374(6522):542–546

    Article  PubMed  CAS  Google Scholar 

  74. Heisler LK, Cowley MA, Tecott LH, Fan W, Low MJ, Smart JL, Rubinstein M, Tatro JB, Marcus JN, Holstege H, Lee CE, Cone RD, Elmquist JK (2002) Activation of central melanocortin pathways by fenfluramine. Science 297(5581):609–611

    Article  PubMed  CAS  Google Scholar 

  75. Xu Y, Berglund ED, Sohn JW, Holland WL, Chuang JC, Fukuda M, Rossi J, Williams KW, Jones JE, Zigman JM, Lowell BB, Scherer PE, Elmquist JK (2010) 5-HT(2C)Rs expressed by pro-opiomelanocortin neurons regulate insulin sensitivity in liver. Nat Neurosci 13(12):1457–1459

    Article  PubMed  CAS  Google Scholar 

  76. Xu Y, Jones JE, Kohno D, Williams KW, Lee CE, Choi MJ, Anderson JG, Heisler LK, Zigman JM, Lowell BB, Elmquist JK (2008) 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron 60(4):582–589

    Article  PubMed  CAS  Google Scholar 

  77. Lam DD, Przydzial MJ, Ridley SH, Yeo GS, Rochford JJ, O'Rahilly S, Heisler LK (2008) Serotonin 5-HT2C receptor agonist promotes hypophagia via downstream activation of melanocortin 4 receptors. Endocrinology 149(3):1323–1328

    Article  PubMed  CAS  Google Scholar 

  78. Qiu J, Xue C, Bosch MA, Murphy JG, Fan W, Ronnekleiv OK, Kelly MJ (2007) Serotonin 5-hydroxytryptamine2C receptor signaling in hypothalamic proopiomelanocortin neurons: role in energy homeostasis in females. Mol Pharmacol 72(4):885–896

    Article  PubMed  CAS  Google Scholar 

  79. Sohn JW, Xu Y, Jones JE, Wickman K, Williams KW, Elmquist JK (2011) Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels. Neuron 71(3):488–497

    Article  PubMed  CAS  Google Scholar 

  80. Xu Y, Jones JE, Lauzon DA, Anderson JG, Balthasar N, Heisler LK, Zinn AR, Lowell BB, Elmquist JK (2010) A serotonin and melanocortin circuit mediates D-fenfluramine anorexia. J Neurosci 30(44):14630–14634

    Article  PubMed  CAS  Google Scholar 

  81. Mountjoy KG, Robbins LS, Mortrud MT, Cone RD (1992) The cloning of a family of genes that encode the melanocortin receptors. Science 257(5074):1248–1251

    Article  PubMed  CAS  Google Scholar 

  82. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O'Rahilly S (2003) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348(12):1085–1095

    Article  PubMed  CAS  Google Scholar 

  83. Barsh GS, Farooqi IS, O'Rahilly S (2000) Genetics of body-weight regulation. Nature 404(6778):644–651

    PubMed  CAS  Google Scholar 

  84. Vaisse C, Clement K, Guy-Grand B, Froguel P (1998) A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 20(2):113–114

    Article  PubMed  CAS  Google Scholar 

  85. Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O'Rahilly S (1998) A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 20(2):111–112

    Article  PubMed  CAS  Google Scholar 

  86. Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK (2003) Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol 457(3):213–235

    Article  PubMed  CAS  Google Scholar 

  87. Liu H, Kishi T, Roseberry AG, Cai X, Lee CE, Montez JM, Friedman JM, Elmquist JK (2003) Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter. J Neurosci 23(18):7143–7154

    PubMed  CAS  Google Scholar 

  88. Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny CD, Christiansen LM, Edelstein E, Choi B, Boss O, Aschkenasi C, Zhang CY, Mountjoy K, Kishi T, Elmquist JK, Lowell BB (2005) Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123(3):493–505

    Article  PubMed  CAS  Google Scholar 

  89. Rossi J, Balthasar N, Olson D, Scott M, Berglund E, Lee CE, Choi MJ, Lauzon D, Lowell BB, Elmquist JK (2011) Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metabolism 13(2):195–204

    Article  PubMed  CAS  Google Scholar 

  90. Michaud JL, Boucher F, Melnyk A, Gauthier F, Goshu E, Levy E, Mitchell GA, Himms-Hagen J, Fan CM (2001) Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum Mol Genet 10(14):1465–1473

    Article  PubMed  CAS  Google Scholar 

  91. Mizuno TM, Kleopoulos SP, Bergen HT, Roberts JL, Priest CA, Mobbs CV (1998) Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and [corrected] in ob/ob and db/db mice, but is stimulated by leptin. Diabetes 47(2):294–297

    Article  PubMed  CAS  Google Scholar 

  92. Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P, Baskin DG (1997) Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46(12):2119–2123

    Article  PubMed  CAS  Google Scholar 

  93. Thornton JE, Cheung CC, Clifton DK, Steiner RA (1997) Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology 138(11):5063–5066

    Article  PubMed  CAS  Google Scholar 

  94. Williams KW, Margatho LO, Lee CE, Choi M, Lee S, Scott MM, Elias CF, Elmquist JK (2010) Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J Neurosci 30(7):2472–2479

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Joel K. Elmquist D.V.M, Ph.D. for insightful comments on this review. This work was supported by the American Diabetes Association (7-11-MN-16) to J.-W.S. and the National Institutes of Health (K01 DK087780) to KWW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin W. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohn, JW., Williams, K.W. Functional Heterogeneity of Arcuate Nucleus Pro-Opiomelanocortin Neurons: Implications for Diverging Melanocortin Pathways. Mol Neurobiol 45, 225–233 (2012). https://doi.org/10.1007/s12035-012-8240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8240-6

Keywords

Navigation