Skip to main content

Advertisement

Log in

Synaptic Protein Alterations in Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alterations occur within distal neuronal compartments, including axons and synapses, during the course of neurodegenerative diseases such as Parkinson’s disease (PD). These changes could hold important implications for the functioning of neural networks, especially since research studies have shown a loss of dendritic spines locating to medium spiny projection neurons and impaired axonal transport in PD-affected brains. However, despite ever-increasing awareness of the vulnerability of synapses and axons, inadequate understanding of the independent mechanisms regulating non-somatic neurodegeneration prevails. This has resulted in limited therapeutic strategies capable of targeting these distinct cellular compartments. Deregulated protein synthesis, folding and degrading proteins, and protein quality-control systems have repeatedly been linked with morphological and functional alterations of synapses in the PD-affected brains. Here, we review current understanding concerning the proteins involved in structural and functional changes that affect synaptic contact-points in PD. The collection of studies discussed emphasizes the need for developing therapeutics aimed at deregulated protein synthesis and degradation pathways operating at axonal and dendritic synapses for preserving “normal” circuitry and function, for as long as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

SNCA [gene]:

α-Synuclein

αSYN [protein]:

α-Synuclein

BACE1:

β-Site amyloid precursor cleaving enzyme

ßSYN [protein]:

ß-Synuclein

AD:

Alzheimer’s disease

Aß:

Amyloid-ß

APP:

Amyloid precursor protein

CSPα:

Cysteine-string protein α

DLBD:

Diffuse Lewy body disease

DA:

Dopamine

EF1A:

Elongation factor 1-alpha

FRET:

Förster resonance energy transfer

GST:

Glutathione S-transferase

Hsp:

Heat shock protein

LBs:

Lewy bodies

LRRK2:

Leucine-rich repeat kinase 2

LRP1:

Lipoprotein receptor-related protein 1

LC-MS/MS:

Liquid chromatography tandem mass spectrometry

MEF2:

Myocyte enhancer factor 2

MSNs:

Medium spiny neurones

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NSF:

N-ethylmaleimide sensitive factor

PINK1:

Phosphatase and tensin homologue-induced kinase1

PolyQ:

Polyglutamine

PKC:

Putative protein kinase C

5-HT:

Serotonin

6-OHDA:

6-Hydroxydopamine

PrP:

Prion protein

5-HT:

Serotonin

SN:

Substantia nigra

UCH-L1:

Ubiquitin carboxyl terminal hydrolase-L1

References

  1. Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898

    Article  PubMed  CAS  Google Scholar 

  2. Wishart TM, Parson SH, Gillingwater TH (2006) Synaptic vulnerability in neurodegenerative disease. J Neuropathol Exp Neurol 65:733–739

    Article  PubMed  CAS  Google Scholar 

  3. Masliah E, Mallory M, Hansen L, DeTeresa R, Terry RD (1993) Quantitative synaptic alterations in the human neocortex during normal aging. Neurology 43:192–197

    PubMed  CAS  Google Scholar 

  4. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synaptic loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  PubMed  CAS  Google Scholar 

  5. Shirai Y, Adachi N, Saito N (2008) Protein kinase Cepsilon: function in neurons. FEBS J 275:3988–3994

    Article  PubMed  CAS  Google Scholar 

  6. Favit A, Grimaldi M, Nelson TJ, Alkon DL (1998) Alzheimer’s-specific effects of soluble beta-amyloid on protein kinase C-alpha and -gamma degradation in human fibroblasts. Proc Natl Acad Sci U S A 95:5562–5567

    Article  PubMed  CAS  Google Scholar 

  7. Lee W, Boo JH, Jung MW, Park SD, Kim YH, Kim SU, Mook-Jung I (2004) Amyloid beta peptide directly inhibits PKC activation. Mol Cell Neurosci 26:222–231

    Article  PubMed  CAS  Google Scholar 

  8. Masters CL, Simms G, Weinman NA, Maulthaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer’s disease and Downs syndrome. Proc Natl Acad Sci U S A 82:4245–4249

    Article  PubMed  CAS  Google Scholar 

  9. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  PubMed  CAS  Google Scholar 

  10. Lanz TA, Carter DB, Merchant KM (2003) Dendritic spine loss in the hippocampus of young PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype. Neurobiol Dis 13:246–253

    Article  PubMed  CAS  Google Scholar 

  11. Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712

    Article  PubMed  CAS  Google Scholar 

  12. Higgins GA, Jacobsen H (2003) Transgenic mouse models of Alzheimer’s disease: phenotype and application. Behav Pharmacol 14:419–438

    PubMed  CAS  Google Scholar 

  13. Gotz J, Streffer JR, David D, Schild A, Hoerndli F, Pennanen L, Kurosinski P, Chen F (2004) Transgenic animal models of Alzheimer’s disease and related disorders: histopathology, behavior and therapy. Mol Psychiatry 9:664–683

    PubMed  CAS  Google Scholar 

  14. Guisti-Rodriguez P, Gao J, Gräff J, Rei D, Soda T, Tsai LH (2011) Synaptic deficits are rescued in the p25/Cdk5 model of neurodegeneration by the reduction of ß-secretase (BACE1). J Neurosci 31:15751–15756

    Article  CAS  Google Scholar 

  15. Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40:471–483

    Article  PubMed  CAS  Google Scholar 

  16. Fischer A, Sananbenesi F, Pang PT, Lu B, Tsai LH (2005) Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron 48:825–838

    Article  PubMed  CAS  Google Scholar 

  17. Wen Y, Yu WH, Maloney B, Bailey J, Ma J, Marié I, Maurin T, Wang L et al (2008) Transcriptional regulation of [beta]-secretase by p25/Cdk5 leads to enhanced amyloidogenic processing. Neuron 57:680–690

    Article  PubMed  CAS  Google Scholar 

  18. Cruz JC, Kim D, Moy LY, Dobbin MM, Sun X, Bronson RT, Tsai LH (2006) p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid beta in vivo. J Neurosci 26:10536–10541

    Article  PubMed  CAS  Google Scholar 

  19. Liu Q, Trotter J, Zhang J, Peters MM, Cheng H, Bao J, Han X, Weeber EJ, Bu G (2010) Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, age-dependent synapse loss and neurodegeneration. J Neurosci 30:17068–17078

    Article  PubMed  CAS  Google Scholar 

  20. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  21. Romero E, Cha GH, Verstreken P, Ly CV, Hughes RE, Bellen HJ, Botas J (2008) Suppression of neurodegeneration and increased neurotransmission caused by expanded full-length accumulating in the cytoplasm. Neuron 57:27–40

    Article  PubMed  CAS  Google Scholar 

  22. Rozas JL, Gómez-Sánchez L, Tomas-Zápico C, Lucas JJ, Fernández-Chacón R (2011) Increased neurotransmitter release at the neuromuscular junction in a mouse model of polyglutamine disease. J Neurosci 31:1106–1113

    Article  PubMed  CAS  Google Scholar 

  23. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–344

    Article  PubMed  CAS  Google Scholar 

  24. Johnson RT (2005) Prion diseases. Lancet 4:635–642

    Article  CAS  Google Scholar 

  25. Guest WC, Silverman JM, Pokrishevsky E, O’Neill MA, Grad LI, Cashman NR (2011) Generalization of the prion hypothesis to other neurodegenerative diseases: an imperfect fit. J Toxicol Environ Health 74:22–24

    Google Scholar 

  26. Eisele YS, Bolmont T, Heikenwalder M, Langer F, Jacobson LH, Yan ZX, Roth K, Aguzzi A et al (2010) Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation. Proc Natl Acad Sci U S A 106:12926–12931

    Article  Google Scholar 

  27. Kane MD, Lipinski WJ, Callahan MJ, Bian F, Durham RA, Schwartz RD, Roher AE, Walker LC (2000) Evidence for seeding of beta-amyloid by intracerebral infusion of Alzheimer brain extracts in beta-amyloid precursor protein-transgenic mice. J Neurosci 20:3606–3611

    PubMed  CAS  Google Scholar 

  28. Meyer-Luehmann M, Coomaraswam J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D et al (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784

    Article  PubMed  CAS  Google Scholar 

  29. Burré J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Südhof TC (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663–1667

    Article  PubMed  CAS  Google Scholar 

  30. Chandra S, Fornai F, Kwon H-B, Yazdani U, Atasoy D, Liu X, Hammer RE, Battaglia G, German DC, Castillo PE et al (2004) Double-knockout mice for alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663–1667

    Google Scholar 

  31. Braak H, Del Tredici K (2008) Invited article: nervous system pathology in sporadic Parkinson disease. Neurology 70:1916–1925

    Article  PubMed  Google Scholar 

  32. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506

    Article  PubMed  CAS  Google Scholar 

  33. Kurowska Z, Englund E, Widnerd H, Lindvalle O, Lia J-Y, Brundin P (2011) Signs of degeneration in 12–22 year old grafts of mesencephalic dopamine neurons in patients with Parkinson’s disease. J Park Dis:83–92

  34. Li J-Y, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Björklund A et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    Article  PubMed  CAS  Google Scholar 

  35. Gerdes H-H, Bukoreshtliev NV, Barroso JFV (2007) Tunnelling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 581:2194–2201

    Article  PubMed  CAS  Google Scholar 

  36. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J et al (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11:328–336

    Article  PubMed  CAS  Google Scholar 

  37. Plowey ED, Chu CT (2011) Synaptic dysfunction in genetic models of Parkinson’s disease: a role for autophagy? 43:60–67

  38. Bagetta V, Ghiglieri V, Sgobio C, Calabresi P, Picconi B (2010) Synaptic dysfunction in Parkinson’s disease. Biochem Soc Trans 38:493–497

    Article  PubMed  CAS  Google Scholar 

  39. Wirdefeldt K, Adami H-O, Cole P, Trichopoulos D, Mandel J (2011) Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol 26:S1–S58

    Article  PubMed  Google Scholar 

  40. Ehringer H, Hornykiewcz O (1960) Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behaviour in disease of the extrapyramidal system. Klin Wochenschr 38:1236–1239

    Article  PubMed  CAS  Google Scholar 

  41. Chaudhuri KR, Healy DG, Schapira AH, National Institute for Clinical Excellence (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5:235–245

    Article  PubMed  Google Scholar 

  42. Chaudhuri KR, Odin P (2010) The challenge of non-motor symptoms in Parkinson’s disease. Prog Brain Res 184:325–341

    Article  PubMed  Google Scholar 

  43. Poewe W (2008) Non-motor symptoms in Parkinson’s disease. Eur J Neurol 15:14–20

    Article  PubMed  Google Scholar 

  44. Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Jenner P (2000) Combined use of the adenosine A(2A) antagonist KW-6002 with l-DOPA or with selective D1 or D2 dopamine agonists increases anti-parkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol 162:321–327

    Article  PubMed  CAS  Google Scholar 

  45. Bibbiani F, Oh JD, Chase TN (2001) Serotonin 5-HT1A agonist improves motor complications in rodent and primate parkinsonian models. Neurology 57:1829–1834

    PubMed  CAS  Google Scholar 

  46. Savola JM, Hill M, Engstrom M, Merivuori H, Wurster S, McGuire SG, Fox SH, Crossman AR, Brotchie JM (2003) Fipamezole (JP-1730) is a potent alpha2 adrenergic receptor antagonist that reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Mov Disord 18:872–883

    Article  PubMed  Google Scholar 

  47. Fox SH, Lang AE, Brotchie JM (2006) Translation of nondopaminergic treatments for levodopa-induced dyskinesia from MPTP-lesioned nonhuman primates to phase IIa clinical studies: keys to success and roads to failure. Mov Disord 21:1578–1594

    Article  PubMed  Google Scholar 

  48. Gregoire L, Samadi P, Graham J, Bedard PJ, Bartoszyk GD, Di Paolo T (2009) Low doses of sarizotan reduce dyskinesias and maintain antiparkinsonian efficacy of l-Dopa in parkinsonian monkeys. Parkinsonism Relat Disord 15:445–452

    Article  PubMed  Google Scholar 

  49. Pienaar IS, Dexter D, Burkhard P (2010) Mitochondrial proteomics as a selective tool for unravelling Parkinson’s disease pathogenesis. Expert Rev Prot 7:205–226

    Article  CAS  Google Scholar 

  50. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269

    Article  PubMed  CAS  Google Scholar 

  51. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    Article  PubMed  CAS  Google Scholar 

  52. Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55:2142–2145

    Article  PubMed  CAS  Google Scholar 

  53. Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109

    Article  PubMed  CAS  Google Scholar 

  54. Schapira AH, Gegg M (2011) Mitochondrial contribution to Parkinson’s disease pathogenesis. Parkinsons Dis 2011:159–160

    Google Scholar 

  55. Parker WD, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 1189:215–218

    Article  PubMed  CAS  Google Scholar 

  56. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  57. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013

    Article  PubMed  CAS  Google Scholar 

  58. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295

    Article  PubMed  CAS  Google Scholar 

  59. Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L (2008) Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 283:23542–23556

    Article  PubMed  CAS  Google Scholar 

  60. Greenamyre JT, Betarbet R, Sherer TB (2003) The rotenone model of Parkinson’s disease: genes, environment and mitochondria. Parkinsonism Relat Disord 9:S59–S64

    Article  PubMed  Google Scholar 

  61. Panov A, Dikalov S, Shalbuyeva N, Taylor G, Sherer T, Greenamyre JT (2005) Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short-term systemic rotenone intoxication. J Biol Chem 280:42026–42035

    Article  PubMed  CAS  Google Scholar 

  62. Przedborski S, Vila M (2003) The 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine mouse model: a tool to explore the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 991:189–198

    Article  PubMed  CAS  Google Scholar 

  63. Przedborski S, Tieu K, Perier C, Vila M (2004) MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. J Bioenerg Biomembr 36:375–379

    Article  PubMed  CAS  Google Scholar 

  64. Bogaerts V, Theuns J, Broeckhoven C (2008) Genetic findings in Parkinson’s disease and translation into treatment: a leading role for mitochondria? Genes Brain Behav 7:129–151

    Article  PubMed  CAS  Google Scholar 

  65. Pilsl A, Winklhofer KF (2011) Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson’s disease. Acta Neuropathol (in press)

  66. Abramov AY, Gegg M, Grunewald A, Wood NW, Klein C, Schapira AH (2011) Bioenergetic consequences of PINK1 mutations in Parkinson’s disease. PLoS One 6:e25622

    Article  PubMed  CAS  Google Scholar 

  67. Beilina A, Van Der Brug M, Ahmad R, Kesavapany S, Miller DW, Petsko GA, Cookson MR (2005) Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci U S A 102:5703–5708

    Article  PubMed  CAS  Google Scholar 

  68. Cai Q, Davis ML, Sheng ZH (2011) Regulation of axonal mitochondrial transport and its impact on synaptic transmission. Neurosci Res 70:9–15

    Article  PubMed  CAS  Google Scholar 

  69. McNaught KS, Shasidharan P, Perl DP, Jenner P, Olanow CW (2002) Aggresome-related biogenesis of Lewy bodies. Eur J Neurosci 16:2136–2148

    Article  PubMed  Google Scholar 

  70. Xie W, Li X, Li C, Zhu W, Jankovic J, Le W (2010) Proteasome inhibition modelling nigral neuron degeneration in Parkinson’s disease. J Neurochem 115:188–199

    Article  PubMed  CAS  Google Scholar 

  71. Dawson TM, Dawson VL (2003) Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Invest 111:145–151

    PubMed  CAS  Google Scholar 

  72. Upadhya SC, Hegde AN (2003) A potential proteasome-interacting motif within the ubiquitin-like domain of parkin and other proteins. Trends Biochem Sci 28:280–283

    Article  PubMed  CAS  Google Scholar 

  73. Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM (2000) Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle associated protein, CDCrel-1. Proc Natl Acad Sci U S A 97:13354–13359

    Article  PubMed  CAS  Google Scholar 

  74. Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 111:209–218

    Article  PubMed  CAS  Google Scholar 

  75. Martin I, Dawson VL, Dawson TM (2011) Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet 12:301–325

    Article  PubMed  CAS  Google Scholar 

  76. Hatano T, Kubo S, Sato S, Hattori N (2009) Pathogenesis of familial Parkinson’s disease: new insights based on monogenic forms of Parkinson’s disease. J Neurochem 111:1075–1093

    Article  PubMed  CAS  Google Scholar 

  77. Crosiers D, Theuns J, Cras P, Van Broeckhoven C (2011) Parkinson disease: insights in clinical, genetic and pathological features of monogenic disease subtypes. J Chem Neuroanat 42:131–141

    Article  PubMed  CAS  Google Scholar 

  78. Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF et al (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38:1184–1191

    Article  PubMed  CAS  Google Scholar 

  79. Hardy J, Lewis P, Revesz T, Lees A, Paisan-Ruiz C (2009) The genetics of Parkinson’s disease: a critical review. Curr Opin Genet Dev 19:254–265

    Article  PubMed  CAS  Google Scholar 

  80. Shulman JM, De Jager PL, Feany MB (2011) Parkinson’s disease: genetics and pathogenesis. Annu Rev Patol 6:193–222

    Article  CAS  Google Scholar 

  81. Paisan-Ruiz C, Bhatia KP, Li A, Hernandez D, Davis M, Wood NW, Hardy J, Houlden H et al (2009) Characterisation of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 65:19–23

    Article  PubMed  Google Scholar 

  82. Shojaee S, Sina F, Banihosseini SS, Kazemi MH, Kalhor R, Shahidi GA, Fakhrai-Rad H, Ronaghi M et al (2008) Genome-wide linkage analysis of a parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am J Hum Genet 82:1375–1384

    Article  PubMed  CAS  Google Scholar 

  83. Di Fonzo A, Dekker MC, Montagna P, Baruzzi A, Yonova EH, Correia Guedes L, Szczerbinska A, Zhao T et al (2009) FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72:240–245

    Article  PubMed  CAS  Google Scholar 

  84. Pankratz N, Nichols WC, Uniacke SK, Halter C, Rudolph A, Shults C, Conneally PM, Foroud T, Parkinson Study Group (2003) Significant linkage of Parkinson disease to chromosome 2q36-37. Am J Hum Genet 72:1053–1057

    Article  PubMed  CAS  Google Scholar 

  85. Strauss KM, Martins LM, Plun-Favreau H, Marx FP, Kautzmann S, Berg D, Gasser T, Wszolek Z et al (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 14:2099–2111

    Article  PubMed  CAS  Google Scholar 

  86. Lautier C, Goldwurm S, Dürr A, Giovannone B, Tsiaras WG, Pezzoli G, Brice A, Smith RJ (2008) Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease. Am J Hum Genet 82:822–833

    Article  PubMed  CAS  Google Scholar 

  87. Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jales R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 6645:839–840

    Article  Google Scholar 

  88. Baba M, Nakajo S, Tu PH, Tomita T, Nakay K, Lee VM, Trojanowski JQ, Iwatsubo T (1998) Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152:879–884

    PubMed  CAS  Google Scholar 

  89. Duda JE, Giasson BI, Chen Q, Gur TL, Hurtig HI, Stern MB, Gollomp SM, Ischiropoulos H, Lee VM, Trojanowski JQ (2000) Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am J Pathol 157:1439–1445

    Article  PubMed  CAS  Google Scholar 

  90. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ et al (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290:985–989

    Article  PubMed  CAS  Google Scholar 

  91. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K et al (2002) Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164

    Article  PubMed  CAS  Google Scholar 

  92. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J et al (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281:29739–29752

    Article  PubMed  CAS  Google Scholar 

  93. Danielson SR, Held JM, Schilling B, Oo M, Gibson BW, Andersen JK (2009) Preferentially increased nitration of alpha-synuclein at tyrosine-39 in a cellular oxidative model of Parkinson’s disease. Anal Chem 81:7823–7828

    Article  PubMed  CAS  Google Scholar 

  94. Shavali S, Combs CK, Ebadi M (2006) Reactive macrophages increase oxidative stress and alpha-synuclein nitration during death of dopaminergic neuronal cells in co-culture: relevance to Parkinson’s disease. Neurochem Res 31:85–94

    Article  PubMed  CAS  Google Scholar 

  95. Castellani R, Smith MA, Richey PL, Perry G (1996) Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res 737:195–200

    Article  PubMed  CAS  Google Scholar 

  96. Abeliovich A, Schmitz Y, Fariñas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostraiatal dopamine system. Neuron 25:239–252

    Article  PubMed  CAS  Google Scholar 

  97. Fallon L, Moreau F, Croft BG, Labib N, Gu WJ, Fon EA (2002) Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and post-synaptic densities in brain. J Biol Chem 277:486–491

    Article  PubMed  CAS  Google Scholar 

  98. Hatano T, Kubo S, Imai S, Maeda M, Ishikawa K, Mizuno Y, Hattori N (2007) Leucine-rich repeat kinase 2 associates with lipid rafts. Hum Mol Genet 16:678–690

    Article  PubMed  CAS  Google Scholar 

  99. Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Schindzielorz A, Okochi M, Leimer U et al (2000) Subcellular localization of wild-type and Parkinson’s disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J Neurosci 20:6365–6373

    PubMed  CAS  Google Scholar 

  100. Kubo SI, Kitami T, Noda S, Shimura H, Uchiyama Y, Asakawa S, Minoshima S, Shimizu N et al (2001) Parkin is associated with cellular vesicles. J Neurochem 78:42–54

    Article  PubMed  CAS  Google Scholar 

  101. Cookson MR (2005) The biochemistry of Parkinson’s disease. Annu Rev Biochem 74:29–52

    Article  PubMed  CAS  Google Scholar 

  102. Rieker C, Kumlesh KD, Lehnhoff K, Barbieri S, Ksiazek I, Kauffmann S, Danner S, Schnell H et al (2011) Neuropathology in mice expressing mouse alpha-synuclein. PLoS One 6:e24834

    Article  PubMed  CAS  Google Scholar 

  103. Van der Putten H, Wiederhold KH, Probst A, Barbieri S, Mistl C, Danner S, Kauffmann S, Hofele K et al (2000) Neuropathology in mice expressing human alpha-synuclein. J Neurosci 20:6021–6029

    PubMed  Google Scholar 

  104. Iwai A (2000) Properties of NACP/α-synuclein and its role in Alzhemer’s disease. Biochim Biophys Acta 1502:95–109

    PubMed  CAS  Google Scholar 

  105. Kazantsev AG, Kolchonsky AM (2008) Central role of alpha-synuclein oligomers in neurodegeneration in Parkinson’s disease. Arch Neurol 65:1577–1581

    Article  PubMed  Google Scholar 

  106. Dawson-Scully K, Lin Y, Imad M, Zhang J, Marin L, Horne JA, Meinertzhagen IA, Karunanithi S et al (2007) Morphological and functional effects of altered cysteine string protein at the Drosophila larval neuromuscular junction. Synapse 61:1–16

    Article  PubMed  CAS  Google Scholar 

  107. Fernandez-Chacon R, Wolfel M, Nishimune H, Tabares L, Schmitz F, Castellano-Munoz M, Rosenmund C, Montesinos ML et al (2004) The synaptic vesicle protein CSP alpha prevents presynaptic degeneration. Neuron 42:237–251

    Article  PubMed  CAS  Google Scholar 

  108. Bruinsma IB, Bruggink KA, Kinast K, Versleijen AA, Segers-Nolten IM, Subramaniam V, Kuiperij HB, Boelens W et al (2011) Inhibition of α-synuclein aggregation by small heat shock proteins. Proteins 79:2956–2967

    Article  PubMed  CAS  Google Scholar 

  109. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295:865–868

    Article  PubMed  CAS  Google Scholar 

  110. Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ (2004) Hsp70 reduces alpha-synuclein aggregation and toxicity. J Biol Chem 279:25497–25502

    Article  PubMed  CAS  Google Scholar 

  111. Cantuti-Castelvetri I, Klucken J, Ingelsson M, Ramasamy K, McLean PJ, Frosch MP, Hyman BT, Standaert DG (2005) Alpha-synuclein and chaperones in dementia with Lewy bodies. J Neuropathol Exp Neurol 64:1058–1066

    Article  PubMed  CAS  Google Scholar 

  112. McLean PJ, Kawamata H, Shariff S, Hewett J, Sharma N, Ueda K, Beakefield XO, Hyman BT (2002) TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J Neurochem 83:846–854

    Article  PubMed  CAS  Google Scholar 

  113. Shin N, Jeong H, Kwon J, Heo HY, Kwon JJ, Yun HJ, Kim CH, Han BS et al (2008) LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res 314:2055–2065

    Article  PubMed  CAS  Google Scholar 

  114. Couteaux R, Pécot-Dechavassine M (1970) Synaptic vesicles and pouches at the level of “active zone” of the neuromuscular junction. C R Acad Sci Hebd Seances Acad Sci D 271:2346–2349

    PubMed  CAS  Google Scholar 

  115. Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  CAS  Google Scholar 

  116. Kavalali ET (2006) Synaptic vesicle reuse and its implications. Neuroscientist 12:57–66

    Article  PubMed  CAS  Google Scholar 

  117. Piccoli G, Condliffe SB, Bauer M, Giesert F, De Astis S, Meixner A, Sarioqlu H, Vogt-Weisenhorn DM et al (2011) LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J Neurosci 31:2225–2237

    Article  PubMed  CAS  Google Scholar 

  118. Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  PubMed  CAS  Google Scholar 

  119. George JH, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15:361–372

    Article  PubMed  CAS  Google Scholar 

  120. Schultz-Schaeffer WJ (2010) The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol 120:131–143

    Article  CAS  Google Scholar 

  121. Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL, Orrison B, Chen A et al (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 22:8797–8807

    PubMed  CAS  Google Scholar 

  122. Nemani VM, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65:66–79

    Article  PubMed  CAS  Google Scholar 

  123. Hilfiker S, Pieribone VA, Czernik AJ, Kao HT, Augustine GJ, Greengard P (1999) Synapsins are regulators of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci 354:269–279

    Article  PubMed  CAS  Google Scholar 

  124. Dalfó E, Barrachina M, Rosa JL, Ambrosio S, Ferrer I (2004) Abnormal alpha-synuclein interactions with rab3a and rabphilin in diffuse Lewy body disease. Neurobiol Dis 16:92–97

    Article  PubMed  CAS  Google Scholar 

  125. Nonet ML, Stauton JE, Kilgard MP, Fergestad T, Hartwieg E, Horvitz HR, Jorgersen EM, Meyer BJ (1997) Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J Neurosci 17:8061–8063

    PubMed  CAS  Google Scholar 

  126. Geppert M, Bolshakov VY, Siegelbaum SA, Takei K, De Camilli P, Hammer RE, Südhof TC (1994) The role of Rab3A in neurotransmitter release. Nature 369:493–497

    Article  PubMed  CAS  Google Scholar 

  127. Li C, Takei K, Geppert M, Daniell L, Stenius K, Chapman ER, Jahn R, De Camilli P et al (1994) Synaptic targeting of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on Rab3A/C. Neuron 13:885–898

    Article  PubMed  CAS  Google Scholar 

  128. Chung SH, Takai Y, Holz RW (1995) Evidence that the rab3a-binding protein, rabphilin 3a, enhances regulated secretion. Studies in adrenal cromaffin cells. J Biol Chem 270:16714–16719

    Article  PubMed  CAS  Google Scholar 

  129. Dalfó E, Gómez-Isla T, Rosa JL, Nieto Bodelón M, Cuadrado Tejedor M, Barrachina M, Ambrosio S, Ferrer I (2004) Abnormal alpha-synuclein interactions with Rab proteins in alpha-synuclein A30P transgenic mice. J Neuropathol Exp Neurol 63:302–313

    PubMed  Google Scholar 

  130. Dalfó E, Albasanz JL, Martin M, Ferrer I (2004) Abnormal metabotropic glutamate receptor expression and signaling in the cerebral cortex in diffuse Lewy body disease is associated with irregular alpha-synuclein/phospholipase C (PLCbeta1) interactions. Brain Pathol 14:388–398

    Article  PubMed  Google Scholar 

  131. Südhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477

    Article  PubMed  CAS  Google Scholar 

  132. Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alpha-synuclein cooperates with CSP-alpha in preventing neurodegeneration. Cell 123:383–396

    Article  PubMed  CAS  Google Scholar 

  133. Garcia-Reitböck P, Anichtchik O, Belluci A, Lovino M, Ballini C, Fineberg E, Ghetti B, Della Corte L et al (2010) SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease. Brain 133:2032–2044

    Article  PubMed  Google Scholar 

  134. Liu CW, Giasson BI, Lewis KA, Lee VM, DeMartino GN, Thomas PJ (2005) A precipitating role for truncated α-synuclein and the proteasome in α-synuclein aggregation: implications for pathogenesis of Parkinson disease. J Biol Chem 280:22670–22678

    Article  PubMed  CAS  Google Scholar 

  135. Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373:2055–2066

    Article  PubMed  CAS  Google Scholar 

  136. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate parkin. PLoS Biol 8:1000298

    Article  CAS  Google Scholar 

  137. Kitada T, Pisani A, Porter DR, Yamaguchi H, Tscherter A, Martella G, Bonsi P, Zhang C et al (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci U S A 104:11441–11446

    Article  PubMed  CAS  Google Scholar 

  138. Shepherd GM, Harris KM (1998) Three-dimensional structure and composition of CA3–>CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J Neurosci 18:8300–8310

    PubMed  CAS  Google Scholar 

  139. Morais VA, Verstreken P, Roethig A, Smet J, Snellinx A, Vanbrabant M, Haddad D, Frezza C et al (2009) Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med 1:99–111

    Article  PubMed  CAS  Google Scholar 

  140. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259

    Article  PubMed  CAS  Google Scholar 

  141. Abou-Sleiman PM, Healy DG, Quinn N, Lees AJ, Wood NW (2003) The role of pathogenic DJ-1 mutations in Parkinson’s disease. Ann Neurol 54:283–286

    Article  PubMed  CAS  Google Scholar 

  142. Djarmati A, Hedrich K, Svetel M, Schafer N, Juric V, Vukosavic S, Hering R, Riess O et al (2004) Detection of parkin (PARK2) and DJ1 (PARK7) mutations in early-onset Parkinson disease: parkin mutation frequency depends on ethnic origin of patients. Hum Mutat 23:525

    Article  PubMed  CAS  Google Scholar 

  143. Hague S, Rogaeva E, Hernandez D, Gulick C, Singleton A, Hanson M, Johnson J, Weiser R et al (2003) Early-onset Parkinson’s disease caused by a compound heterozygous DJ-1 mutation. Ann Neurol 5(4):271–274

    Article  CAS  Google Scholar 

  144. Hering R, Strauss KM, Tao X, Bauer A, Woitalla D, Mietz EM, Petrovic S, Bauer P et al (2004) Novel homozygous pE64D mutation in DJ1 in early onset Parkinson disease (PARK7). Hum Mutat 24:321–329

    Article  PubMed  CAS  Google Scholar 

  145. Macedo MG, Verbaan D, Fang Y, van Rooden SM, Visser M, Anar B, Uras A, Groen JL et al (2009) Genotypic and phenotypic characteristics of Dutch patients with early onset Parkinson’s disease. Mov Disord 24:196–203

    Article  PubMed  Google Scholar 

  146. Tarantino P, Civitelli D, Annesi F, De Marco EV, Rocca FE, Pugliese P, Nicoletti G, Carrideo S et al (2009) Compound heterozygosity in DJ-1 gene non-coding portion related to parkinsonism. Parkinsonism Relat Disord 15:324–326

    Article  PubMed  Google Scholar 

  147. Clark LN, Afridi S, Mejia-Santana H, Harris J, Louis ED, Cote LJ, Andrews H, Singleton A et al (2004) Analysis of an early-onset Parkinson’s disease cohort for DJ-1 mutations. Mov Disord 19:796–800

    Article  PubMed  Google Scholar 

  148. Hedrich K, Djarmati A, Schafer N, Hering R, Wellenbrock C, Weiss PH, Hilker R, Vieregge P et al (2004) DJ-1 (PARK7) mutations are less frequent than parkin (PARK2) mutations in early-onset Parkinson disease. Neurology 62:389–394

    PubMed  CAS  Google Scholar 

  149. Ibanez P, De Michele G, Bonifati V, Lohmann E, Thobois S, Pollak P, Agid Y, Heutink P et al (2003) Screening for DJ-1 mutations in early onset autosomal recessive parkinsonism. Neurology 61:1429–1431

    PubMed  CAS  Google Scholar 

  150. Lockhart PJ, Lincoln S, Hulihan M, Kachergus J, Wilkes K, Bisceglio G, Mash DC, Farrer MJ (2004) DJ-1 mutations are a rare cause of recessively inherited early onset parkinsonism mediated by loss of protein function. J Med Genet 41:e22

    Article  PubMed  CAS  Google Scholar 

  151. Mellick GD, Siebert GA, Funayama M, Buchanan DD, Li Y, Imamichi Y, Yoshino H, Silburn PA et al (2009) Screening PARK genes for mutations in early-onset Parkinson’s disease patients from Queensland, Australia. Parkinsonism Relat Disord 15:105–109

    Article  PubMed  Google Scholar 

  152. Pankratz N, Pauciulo MW, Elsaesser VE, Marek DK, Halter CA, Wojcieszek J, Rudolph A, Shults CW et al (2006) Mutations in DJ-1 are rare in familial Parkinson disease. Neurosci Lett 408:209–213

    Article  PubMed  CAS  Google Scholar 

  153. Tan EK, Tan C, Zhao Y, Yew K, Shen H, Chandran VR, Teoh ML, Yih Y et al (2004) Genetic analysis of DJ-1 in a cohort Parkinson’s disease patients of different ethnicity. Neurosci Lett 367:109–112

    Article  PubMed  CAS  Google Scholar 

  154. Miller DW, Ahmad R, Hague S, Baptista MJ, Canet-Aviles R, McLendon C, Carter DM, Zhu PP et al (2003) L166P mutant DJ-1, causative for recessive Parkinson’s disease, is degraded through the ubiquitin–proteasome system. J Biol Chem 278:36588–36595

    Article  PubMed  CAS  Google Scholar 

  155. Zhang L, Shimoji M, Thomas B, Moore DJ, Yu SW, Marupudi NI, Torp R, Torgner IA et al (2005) Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 14:2063–2073

    Article  PubMed  CAS  Google Scholar 

  156. Blackinton J, Lakshminarasimhan M, Thomas KJ, Ahmad R, Greggio E, Raza AS, Cookson MR, Wilson MA (2009) Formation of a stabilized cysteine sulfinic acid is critical for the mitochondrial function of the parkinsonism protein DJ-1. J Biol Chem 284:6476–6485

    Article  PubMed  CAS  Google Scholar 

  157. Canet-Aviles RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, Baptista MJ, Ringe D et al (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A 101:9103–9108

    Article  PubMed  CAS  Google Scholar 

  158. Taira T, Iguchi-Ariga SM, Ariga H (2004) Co-localization with DJ-1 is essential for the androgen receptor to exert its transcription activity that has been impaired by androgen antagonists. Biol Pharm Bull 27:574–577

    Article  PubMed  CAS  Google Scholar 

  159. Lee SJ, Kim SJ, Kim IK, Ko J, Jeong CS, Kim GH, Park C, Kang SO et al (2003) Crystal structures of human DJ-1 and Escherichia coli Hsp31, which share an evolutionarily conserved domain. J Biol Chem 278:44552–44559

    Article  PubMed  CAS  Google Scholar 

  160. Kim RH, Peters M, Jang Y, Shi W, Pintilie M, Fletcher GC, DeLuca C, Liepa J et al (2005) DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 7:263–273

    Article  PubMed  CAS  Google Scholar 

  161. Niki T, Takahashi-Niki K, Taira T, Iguchi-Ariga SM, Ariga H (2003) DJBP: a novel DJ-1 binding protein, negatively regulates the androgen receptor by recruiting histone deacetylase complex, and DJ-1 antagonizes this inhibition by abrogation of this complex. Mol Cancer Res 1:247–261

    PubMed  CAS  Google Scholar 

  162. Shinbo Y, Taira T, Niki T, Iguchi-Ariga SM, Ariga H (2005) DJ-1 restores p53 transcriptional activity inhibited by Topors/p53BP3. Int J Oncol 26:641–648

    PubMed  CAS  Google Scholar 

  163. Takahashi K, Taira T, Niki T, Seino C, Iguchi-Ariga SM, Ariga H (2001) DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx alpha to the receptor. J Biol Chem 276:37556–37563

    Article  PubMed  CAS  Google Scholar 

  164. Olzmann JA, Bordelon JR, Muly EC, Rees HD, Levey AI, Li L, Chin LS (2007) Selective enrichment of DJ-1 protein in primate striatal neuronal processes: implications for Parkinson’s disease. J Comp Neurol 500:585–599

    Article  PubMed  CAS  Google Scholar 

  165. Usami Y, Hatano T, Imai S, Kubo S-I, Sato S, Saiki S, Fujioka Y, Ohba Y et al (2011) DJ-1 associates with synaptic membranes. Neurobiol Dis 43:651–662

    Article  PubMed  CAS  Google Scholar 

  166. Harald Stenmark VMO (2011) The Rab GTPase family. Genome Biol 2:1-3007.1–1-3007.7

    Google Scholar 

  167. Goldberg MS, Pisani A, Haburcak M, Vortherms TA, Kitada T, Costa C, Tong Y, Martella G et al (2005) Nigrostraital dopaminergic deficits and hypokinesia caused by inactivation of the familial parkinsonism-linked gene DJ-1. Neuron 45:489–496

    Article  PubMed  CAS  Google Scholar 

  168. Hummel T, Krukkert K, Roos J, Davis G, Klämbt C (2000) Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron 26:357–370

    Article  PubMed  CAS  Google Scholar 

  169. Roos J, Hummel T, Ng N, Klämbt C, Davis GW (2000) Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron 26:371–382

    Article  PubMed  CAS  Google Scholar 

  170. Lee S, Liu H-P, Lin W-Y, Guo H, Lu B (2010) LRRK2 kinase regulates synaptic morphology through distinct substrates at the presynaptic and postsynaptic compartments of the Drosophila neuromuscular junction. J Neurosci 30:16959–16969

    Article  PubMed  CAS  Google Scholar 

  171. Hornykiewicz O, Kish SJ (1986) Biochemical pathophysiology of Parkinson’s disease. In: Yahr MD, Bergmann KJ (eds) Advances in neurology. Raven Press, New York, pp 19–34

    Google Scholar 

  172. Zigmond MJ, Abercrombie ED, Grace AA, Stricker EM (1990) Compensations after lesions of central dopaminergic neurons: some clinical and basic implications. TINS 13:290–295

    PubMed  CAS  Google Scholar 

  173. Altar CA, Marien MR, Marshall JF (1987) Time course of adaptations in dopamine biosynthesis, metabolism, and release following nigrostriatal lesions: implications for behavioral recovery from brain injury. J Neurochem 48:390–399

    Article  PubMed  CAS  Google Scholar 

  174. Onn SP, Berger TW, Stricker EM, Zigmond MJ (1986) Effects of intraventricular 6-hydroxydopamine on the dopaminergic innervation of striatum: histochemical and neurochemical analysis. Brain Res 376:8–19

    Article  PubMed  CAS  Google Scholar 

  175. Wolf ME, Zigmond MJ, Kapatos G (1989) Tyrosine hydroxylase content of residual striatal dopamine nerve terminals following 6-hydroxydopamine administration: a flow cytometric study. J Neurochem 53:879–885

    Article  PubMed  CAS  Google Scholar 

  176. Zigmond MJ, Acheson AL, Stachowiak MK, Stricker EM (1984) Neurochemical compensation after nigrostriatal bundle injury in an animal model of preclinical parkinsonisms. Arch Neurol 41:856–861

    Article  PubMed  CAS  Google Scholar 

  177. Raju DV, Ahern TH, Shah DJ, Wright TM, Standaert DG, Hall RA, Smith Y (2008) Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism. Eur J Neurosci 27:1647–1658

    Article  PubMed  Google Scholar 

  178. Wiedenmann B, Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38 000 characteristic of presynaptic vesicles. Cell 41:1017–1028

    Article  PubMed  CAS  Google Scholar 

  179. Bolam J, Hanley J, Booth P (2000) Synaptic organisation of the basal ganglia. J Anat 196:527–542

    Article  PubMed  CAS  Google Scholar 

  180. Graybiel A (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254

    Article  PubMed  CAS  Google Scholar 

  181. Tian X, Kai L, Hockberger PE, Wokosin DL, Surmeier DJ (2010) MEF-3 regulates activity-dependent spine loss in striatopallidal medium spiny neurons. Mol Cell Neurosci 44:94–108

    Article  PubMed  CAS  Google Scholar 

  182. Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:422–435

    Article  PubMed  CAS  Google Scholar 

  183. Day M, Wang Z, Ding J, An X, Ingham CA, Shering AF, Wokosin D, Ilijic E et al (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9:251–259

    Article  PubMed  CAS  Google Scholar 

  184. Steward O, Wallace CS, Lyford GL, Worley PF (1998) Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21:741–751

    Article  PubMed  CAS  Google Scholar 

  185. Imai Y, Gehrke S, Wang HQ, Takahashi R, Hasegawa K, Oota E, Lu B (2008) Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 27:2432–2443

    Article  PubMed  CAS  Google Scholar 

  186. Gillardon F (2009) Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability: a point of convergence in parkinsonian neurodegeneration? J Neurochem 110:1514–1522

    Article  PubMed  CAS  Google Scholar 

  187. Gloeckner CJ, Kinkl N, Schumacher A, Braun RJ, O’Neill E, Meitinger T, Kolch W, Prokisch H et al (2006) The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet 15:223–232

    Article  PubMed  CAS  Google Scholar 

  188. Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM, Ross CA (2006) Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 9:1231–1233

    Article  PubMed  CAS  Google Scholar 

  189. Jaleel M, Nichols RJ, Deak M, Campbell DG, Gillardon F, Knebel A, Alessi DR (2007) LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson’s disease mutants affect kinase activity. Biochem J 405:307–317

    Article  PubMed  CAS  Google Scholar 

  190. MacLeod D, Dowman J, Hammond R, Leete T, Inoue K, Abeliovich A (2006) The familial parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 52:587–593

    Article  PubMed  CAS  Google Scholar 

  191. Gillardon F (2009) Interaction of elongation factor 1-alpha with leucinerich repeat kinase 2 impairs kinase activity and microtubule bundling in vitro. Neuroscience 163:533–539

    Article  PubMed  CAS  Google Scholar 

  192. Biskup S, Moore DJ, Celsi F, Higashi S, West AB, Andrabi SA, Kurkinen K, Yu S-W et al (2006) Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol 60:557–569

    Article  PubMed  CAS  Google Scholar 

  193. Moore RC, Durso NA, Cyr RJ (1998) Elongation factor-1alpha stabilizes microtubules in a calcium/calmodulin-dependent manner. Cell Motil Cytoskeleton 41:168–180

    Article  PubMed  CAS  Google Scholar 

  194. Wang MS, Fang G, Culver DG, Davis AA, Rich MM, Glass JD (2001) The Wlds protein protects against axonal degeneration: a model of gene therapy for peripheral neuropathy. Ann Neurol 50:773–779

    Article  PubMed  CAS  Google Scholar 

  195. Sajadi A, Schneider BL, Aebischer P (2004) Wlds-mediated protection of dopaminergic fibers in an animal model of Parkinson disease. Curr Biol 14:326–330

    PubMed  CAS  Google Scholar 

  196. Wishart TM, Paterson JM, Short DM, Meredith S, Robertson KA, Sutherland C, Cousin MA, Dutia MB et al (2007) Differential proteomics analysis of synaptic proteins identifies potential cellular targets and protein mediators of synaptic neuroprotection conferred by the slow Wallerian degeneration (Wlds) gene. Mol Cell Proteomics 6:1318–1330

    Article  PubMed  CAS  Google Scholar 

  197. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH et al (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Medical Research Council.

Author contribution statement

All authors had final approval of the submitted manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilse S. Pienaar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pienaar, I.S., Burn, D., Morris, C. et al. Synaptic Protein Alterations in Parkinson’s Disease. Mol Neurobiol 45, 126–143 (2012). https://doi.org/10.1007/s12035-011-8226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-011-8226-9

Keywords

Navigation