Skip to main content
Log in

Reactive Macrophages Increase Oxidative Stress and Alpha-Synuclein Nitration During Death of Dopaminergic Neuronal Cells in Co-Culture: Relevance to Parkinson’s Disease

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons and a substantial decrease in the neurotransmitter dopamine in the nigro-striatal region of the brain. Increased markers of oxidative stress, activated microglias and elevated levels of pro-inflammatory cytokines have been identified in the brains of patients with PD. Although the precise mechanism of loss of neurons in PD remains unclear, these findings suggest that microglial activation may contribute directly to loss of dopaminergic neurons in PD patients. In the present study, we tested the hypothesis that activated microglia induces nitric oxide-dependent oxidative stress which subsequently causes death of dopaminergic neuronal cells in culture. We employed lipopolysaccharide (LPS) stimulated mouse macrophage cells (RAW 264.7) as a reactive microglial model and SH-SY5Y cells as a model for human dopaminergic neurons. LPS stimulation of macrophages led to increased production of nitric oxide in a time and dose dependent manner as well as subsequent generation of other reactive nitrogen species such as peroxynitrite anions. In co-culture conditions, reactive macrophages stimulated SH-SY5Y cell death characterized by increased peroxynitrite concentrations and nitration of alpha-synuclein within SH-SY5Y cells. Importantly 1400W, an inhibitor of the inducible nitric oxide synthase provided protection from cell death via decreasing the levels of nitrated alpha-synuclein. These results suggest that reactive microglias could induce oxidative stress in dopaminergic neurons and such oxidative stress may finally lead to nitration of alpha-synuclein and death of dopaminergic neurons in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Chou H. I. Hurtig (2005) Classical motor features of Parkinson’s disease M. Ebadi R. F. Pfeiffer (Eds) Parkinson’s disease CRC Press New York 171–181

    Google Scholar 

  2. M. Ebadi S. K. Srinivasan M. D. Baxi (1996) ArticleTitleOxidative stress and antioxidant therapy in Parkinson’s disease Prog. Neurobiol. 48 1–19 Occurrence Handle10.1016/0301-0082(95)00029-1 Occurrence Handle1:CAS:528:DyaK28XisFyhsr4%3D Occurrence Handle8830346

    Article  CAS  PubMed  Google Scholar 

  3. M. Ebadi P. Govitrapong S. Sharma D. Muralikrishnan S. Shavali L. Pellett R. Schafer C. Albano J. Eken (2001) ArticleTitleUbiquinone (coenzyme q10) and mitochondria in oxidative stress of Parkinson’s disease Biol. Signals Recept. 10 224–253 Occurrence Handle1:CAS:528:DC%2BD3MXktlOrsLw%3D Occurrence Handle11351130

    CAS  PubMed  Google Scholar 

  4. M. Ebadi R. Pfeiffer (2005) Parkinson’s disease, EditionNumber1 Taylor and Francis London, England

    Google Scholar 

  5. D. T. Dexter C. J. Carter F. R. Wells F. Javoy-Agid Y. Agid A. Lees P. Jenner C. D. Marsden (1989) ArticleTitleBasal lipid peroxidation in substantia nigra is increased in Parkinson’s disease J. Neurochem. 52 381–389 Occurrence Handle1:CAS:528:DyaL1MXhtFalsrc%3D Occurrence Handle2911023

    CAS  PubMed  Google Scholar 

  6. Z. I. Alam A. Jenner S. E. Daniel A. J. Lees N. Cairns C. D. Marsden P. Jenner B. Halliwell (1997) ArticleTitleOxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra J. Neurochem. 69 1196–1203 Occurrence Handle1:CAS:528:DyaK2sXls1Chtbs%3D Occurrence Handle9282943

    CAS  PubMed  Google Scholar 

  7. E. Floor M. G. Wetzel (1998) ArticleTitleIncreased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay J. Neurochem. 70 268–275 Occurrence Handle1:CAS:528:DyaK1cXmt1Wg Occurrence Handle9422371

    CAS  PubMed  Google Scholar 

  8. A. H. Schapira (1993) ArticleTitleMitochondrial complex I deficiency in Parkinson’s disease Adv. Neurol. 60 288–291 Occurrence Handle1:CAS:528:DyaK3sXitlWhurw%3D Occurrence Handle8420145

    CAS  PubMed  Google Scholar 

  9. E. C. Hirsch S. Hunot P. Damier B. Faucheux (1998) ArticleTitleGlial cells and inflammation in Parkinson’s disease: A role in Neurodegeneration? Ann. Neurol. 44 115–120

    Google Scholar 

  10. U. Wullner T. Klockgether (2003) ArticleTitleInflammation in Parkinson’s disease J. Neurol. 250 35–38

    Google Scholar 

  11. B. Liu J. S. Hong (2003) ArticleTitleRole of microglia in inflammation-mediated neurodegenerative diseases: Mechanisms and strategies for therapeutic intervention J. Pharmacol Exp. Ther. 304 1–7 Occurrence Handle1:CAS:528:DC%2BD3sXhtF2qug%3D%3D Occurrence Handle12490568

    CAS  PubMed  Google Scholar 

  12. F. M. Hofman D. R. Hinton K. Johnson J. E. Merrill (1989) ArticleTitleTumor necrosis factor identified in multiple sclerosis brain J. Exp. Med. 170 607–612 Occurrence Handle10.1084/jem.170.2.607 Occurrence Handle1:CAS:528:DyaL1MXltlahsLY%3D Occurrence Handle2754393

    Article  CAS  PubMed  Google Scholar 

  13. J. Rogers J. Luber-Nardo S. D. Styren W. H. Civin (1988) ArticleTitleExpression of immune system associated antigens by cells of the central nervous system: relationship to the pathology of Alzheimer’s disease Neurobiol. Aging 9 339–349 Occurrence Handle1:STN:280:BiaD2c%2FktlA%3D Occurrence Handle3263583

    CAS  PubMed  Google Scholar 

  14. C. K. Combs J. C. Karlo S. C. Kao G. E. Landreth (2001) ArticleTitleAmyloid Stimulation of Microglia and Monocytes Results in TNF-Dependent Expression of Inducible Nitric Oxide Synthase and Neuronal Apoptosis J. Neurosci. 21 1179–1188 Occurrence Handle1:CAS:528:DC%2BD3MXhtFers7c%3D Occurrence Handle11160388

    CAS  PubMed  Google Scholar 

  15. P. L. McGeer S. Itagaki B. E. Boyes E. G. McGeer (1988) ArticleTitleReactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains Neurology 38 1285–1291 Occurrence Handle1:STN:280:BieB1cfmsl0%3D Occurrence Handle3399080

    CAS  PubMed  Google Scholar 

  16. G. W. Kreutzberg (1996) ArticleTitleMicroglia: a sensor for pathological events in the CNS Trends Neurosci. 19 312–318 Occurrence Handle10.1016/0166-2236(96)10049-7 Occurrence Handle1:STN:280:ByiD3c%2FltFA%3D Occurrence Handle8843599

    Article  CAS  PubMed  Google Scholar 

  17. K. M. Boje P. K. Arora (1992) ArticleTitleMicroglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death Brain Res. 587 250–256 Occurrence Handle10.1016/0006-8993(92)91004-X Occurrence Handle1:CAS:528:DyaK38XlvV2ntro%3D Occurrence Handle1381982

    Article  CAS  PubMed  Google Scholar 

  18. C. C. Chao S. Hu T. W. Molitor E. G. Shaskan P. K. Peterson (1992) ArticleTitleActivated microglia mediate neuronal cell injury via a nitric oxide mechanism J. Immunol. 149 2736–2741 Occurrence Handle1:CAS:528:DyaK3sXht1aku7c%3D Occurrence Handle1383325

    CAS  PubMed  Google Scholar 

  19. S. O. McGuire Z. D. Ling J. W. Lipton C. E. Sortwell T. J. Collier P. M. Carvey (2001) ArticleTitleTumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons Exp. Neurol. 169 219–230 Occurrence Handle10.1006/exnr.2001.7688 Occurrence Handle1:CAS:528:DC%2BD3MXjsF2ltbg%3D Occurrence Handle11358437

    Article  CAS  PubMed  Google Scholar 

  20. G. H. Jeohn L. Y. Kong B. Wilson P. Hudson J. S. Hong (1998) ArticleTitleSynergistic neurotoxic effects of combined treatments with cytokines in murine primary mixed neuron/glia cultures J. Neuroimmunol. 85 1–10 Occurrence Handle10.1016/S0165-5728(97)00204-X Occurrence Handle1:CAS:528:DyaK1cXisFalurc%3D Occurrence Handle9626992

    Article  CAS  PubMed  Google Scholar 

  21. L. J. Lawson V. H. Perry P. Dri S. Gordon (1990) ArticleTitleHeterogeneity in the distribution and morphology of microglia in the normal adult mouse brain Neuroscience 39 151–170 Occurrence Handle10.1016/0306-4522(90)90229-W Occurrence Handle1:STN:280:By6B3M7otF0%3D Occurrence Handle2089275

    Article  CAS  PubMed  Google Scholar 

  22. J. W. Langston L. S. Forno J. Tetrud A. G. Reeves J. A. Kaplan D. Karluk (1999) ArticleTitleEvidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure Ann. Neurol. 46 598–605 Occurrence Handle10.1002/1531-8249(199910)46:4<598::AID-ANA7>3.0.CO;2-F Occurrence Handle1:CAS:528:DyaK1MXmvVGitbg%3D Occurrence Handle10514096

    Article  CAS  PubMed  Google Scholar 

  23. G. T. Liberatore V. Jackson-Lewis S. Vukosavic A. S. Mandir M. Vila W. G. McAuliffe V. L. Dawson T. M. Dawson S. Przedborski (1999) ArticleTitleInducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease Nat. Med. 5 1403–1409 Occurrence Handle1:CAS:528:DyaK1MXnvFGjtrw%3D Occurrence Handle10581083

    CAS  PubMed  Google Scholar 

  24. M. Mogi M. Harada P. Riederer H. Narabayashi K. Fujita T. Nagatsu (1994) ArticleTitleTumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients Neurosci. Lett. 165 208–210 Occurrence Handle10.1016/0304-3940(94)90746-3 Occurrence Handle1:CAS:528:DyaK2cXitFCqsbY%3D Occurrence Handle8015728

    Article  CAS  PubMed  Google Scholar 

  25. D. Blum-Degen T. Muller W. Kuhn M. Gerlach H. Przuntek P. Riederer (1995) ArticleTitleInterleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients Neurosci. Lett. 202 17–20 Occurrence Handle1:CAS:528:DyaK28XkslOluw%3D%3D Occurrence Handle8787820

    CAS  PubMed  Google Scholar 

  26. S. Hunot N. Dugas B. Faucheux A. Hartmann M. Tardieu P. Debre Y. Agid B. Dugas E. C. Hirsch (1999) ArticleTitleFcepsilonRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells J. Neurosci. 19 3440–3447 Occurrence Handle1:CAS:528:DyaK1MXislGrs7s%3D Occurrence Handle10212304

    CAS  PubMed  Google Scholar 

  27. W. G. Kim R. P. Mohney B. Wilson G. H. Jeohn B. Liu J. S. Hong (2000) ArticleTitleRegional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia J. Neurosci. 20 6309–6316 Occurrence Handle1:CAS:528:DC%2BD3cXlvVGjtbs%3D Occurrence Handle10934283

    CAS  PubMed  Google Scholar 

  28. M. Trujillo M. Naviliat M. N. Alvarez G. Peluffo R. Radi (2000) ArticleTitlePeroxynitrite biochemistry: formation, reactions and detection: Nitric oxide and superoxide in biological systems ANALUSIS 28 518–527 Occurrence Handle1:CAS:528:DC%2BD3cXotF2rtLk%3D

    CAS  Google Scholar 

  29. W. Zhao W. Xie W. Le D. R. Beers Y. He J. S. Henkel E. P. Simpson A. A. Yen Q. Xiao S. H. Appel (2004) ArticleTitleActivated microglia initiate motor neuron injury by a nitric oxide and glutamate-mediated mechanism J. Neuropathol. Exp. Neurol. 63 964–977 Occurrence Handle1:CAS:528:DC%2BD2cXotFajtL4%3D Occurrence Handle15453095

    CAS  PubMed  Google Scholar 

  30. Y. Kotake Y. Tasaki Y. Makino S. Ohta M. Hirobe (1995) ArticleTitle1-Benzyl-1,2,3,4-tetrahydroisoquinoline as a parkinsonism-inducing agent: a novel endogenous amine in mouse brain and parkinsonian CSF J. Neurochem. 65 2633–2638 Occurrence Handle1:CAS:528:DyaK2MXpsFersbw%3D Occurrence Handle7595560

    CAS  PubMed  Google Scholar 

  31. Y. Kotake M. Yoshida M. Ogawa Y. Tasaki M. Hirobe S. Ohta (1996) ArticleTitleChronic administration of 1-benzyl-1,2,3,4-tetrahydroisoquinoline, an endogenous amine in the brain, induces parkinsonism in a primate Neurosci. Lett. 217 69–71 Occurrence Handle10.1016/0304-3940(96)13065-2 Occurrence Handle1:CAS:528:DyaK28XmsFGlt78%3D Occurrence Handle8905742

    Article  CAS  PubMed  Google Scholar 

  32. S. Shavali M. Ebadi (2003) ArticleTitle1-Benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ), an endogenous neurotoxin, induces dopaminergic cell death through apoptosis Neurotoxicology 24 417–424 Occurrence Handle10.1016/S0161-813X(03)00015-9 Occurrence Handle1:CAS:528:DC%2BD3sXktVOhtr8%3D Occurrence Handle12782106

    Article  CAS  PubMed  Google Scholar 

  33. S. Shavali E. C. Carlson J. C. Swinscoe M. Ebadi (2004) ArticleTitle1-Benzyl-1,2,3,4-tetrahydroisoquinoline, a Parkinsonism-inducing endogenous toxin, increases alpha-synuclein expression and causes nuclear damage in human dopaminergic cells J. Neurosci. Res. 76 563–571 Occurrence Handle10.1002/jnr.20082 Occurrence Handle1:CAS:528:DC%2BD2cXjvVyjtrg%3D Occurrence Handle15114628

    Article  CAS  PubMed  Google Scholar 

  34. L. Qin Y. Liu T. Wang S. J. Wei M. L. Block B. Wilson B. Liu J. S. Hong (2004) ArticleTitleNADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and pro-inflammatory gene expression in activated microglia J. Biol. Chem. 279 1415–1421 Occurrence Handle1:CAS:528:DC%2BD2cXhtV2jtw%3D%3D Occurrence Handle14578353

    CAS  PubMed  Google Scholar 

  35. N. W. Kooy J. A. Royall H. Ischiropoulos (1997) ArticleTitleOxidation of 2′7′-dichlorofluorescin by peroxynitrite Free Radic. Res. 27 245–254 Occurrence Handle1:CAS:528:DyaK2sXmvFykurg%3D Occurrence Handle9350429

    CAS  PubMed  Google Scholar 

  36. O. Myhre J. M. Andersen H. Aarnes F. Fonnum (2003) ArticleTitleEvaluation of the probes 2′7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation Biochem. Pharmacol. 65 1575–1582 Occurrence Handle10.1016/S0006-2952(03)00083-2 Occurrence Handle1:CAS:528:DC%2BD3sXjs1Cqtr8%3D Occurrence Handle12754093

    Article  CAS  PubMed  Google Scholar 

  37. M. Ebadi S. K. Sharma (2003) ArticleTitlePeroxynitrite and mitochondrial dysfunction in the pathogenesis of Parkinson’s disease Antioxid. Redox Signal 5 319–335 Occurrence Handle10.1089/152308603322110896 Occurrence Handle1:CAS:528:DC%2BD3sXlt1Cksrs%3D Occurrence Handle12880486

    Article  CAS  PubMed  Google Scholar 

  38. J. T. Meij C. L. Haselton K. L. Hillman D. Muralikrishnan M. Ebadi L. Yu (2004) ArticleTitleDifferential mechanisms of nitric oxide- and peroxynitrite-induced cell death Mol. Pharmacol. 66 1043–1053 Occurrence Handle10.1124/mol.104.001354 Occurrence Handle1:CAS:528:DC%2BD2cXotlGmurs%3D Occurrence Handle15258257

    Article  CAS  PubMed  Google Scholar 

  39. N. R. Bhat P. Zhang J. C. Lee E. L. Hogan (1998) ArticleTitleExtracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures J. Neurosci. 18 1633–1641 Occurrence Handle1:CAS:528:DyaK1cXht12jtbo%3D Occurrence Handle9464988

    CAS  PubMed  Google Scholar 

  40. C. C. Chen J. K. Wang W. C. Chen S. B. Lin (1998) ArticleTitleProtein kinase C eta mediates lipopolysaccharide-induced nitric-oxide synthase expression in primary astrocytes J. Biol. Chem. 273 19424–19430 Occurrence Handle1:CAS:528:DyaK1cXlt1CisLk%3D Occurrence Handle9677361

    CAS  PubMed  Google Scholar 

  41. C. C. Chen J. K. Wang (1999) ArticleTitlep38 but not p44/42 mitogen-activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages Mol. Pharmacol. 55 481–488 Occurrence Handle1:CAS:528:DyaK1MXhslWjur8%3D Occurrence Handle10051531

    CAS  PubMed  Google Scholar 

  42. S. Sanlioglu C. M. Williams L. Samavati N. S. Butler G. Wang P. B. McCray SuffixJr. T. C. Ritchie G. W. Hunninghake E. Zandi J. F. Engelhardt (2001) ArticleTitleLipopolysaccharide induces Rac1-dependent reactive oxygen species formation and coordinates tumor necrosis factor-alpha secretion through IKK regulation of NF-kappa B J. Biol. Chem. 276 30188–30198 Occurrence Handle10.1074/jbc.M102061200 Occurrence Handle1:CAS:528:DC%2BD3MXmtFehtrs%3D Occurrence Handle11402028

    Article  CAS  PubMed  Google Scholar 

  43. M. G. Spillantini M. L. Schmidt V. M. Lee J. Q. Trojanowski R. Jakes M. Goedert (1997) ArticleTitleAlpha-synuclein in Lewy bodies Nature 388 839–840 Occurrence Handle10.1038/42166 Occurrence Handle1:CAS:528:DyaK2sXlslWru7o%3D Occurrence Handle9278044

    Article  CAS  PubMed  Google Scholar 

  44. M. G. Spillantini R. A. Crowther R. Jakes M. Hasegawa M. Goedert (1998) ArticleTitleα- Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies Proc. Natl. Acad. Sci. USA 95 6469–6473 Occurrence Handle1:CAS:528:DyaK1cXjtlKgtLo%3D Occurrence Handle9600990

    CAS  PubMed  Google Scholar 

  45. M. G. Spillantini M. Goedert (2000) ArticleTitleThe alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy Ann. NY Acad. Sci. 920 16–27 Occurrence Handle1:STN:280:DC%2BD3M7gslWhsQ%3D%3D Occurrence Handle11193145

    CAS  PubMed  Google Scholar 

  46. M. H. Polymeropoulos C. Lavedan E. Leroy et al. (1997) ArticleTitleMutation in the alpha-synuclein gene identified in families with Parkinson’s disease Science 276 2045–2047 Occurrence Handle10.1126/science.276.5321.2045 Occurrence Handle1:CAS:528:DyaK2sXkt1altr4%3D Occurrence Handle9197268

    Article  CAS  PubMed  Google Scholar 

  47. R. Kruger W. Kuhn T. Muller D. Woitalla M. Graeber S. Kosel H. Przuntek J. T. Epplen L. Schols O. Riess (1998) ArticleTitleAla30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease Nat. Genet. 18 106–108 Occurrence Handle1:CAS:528:DyaK1cXosFCntA%3D%3D Occurrence Handle9462735

    CAS  PubMed  Google Scholar 

  48. B. I. Giasson J. E. Duda I. V. Murray Q. Chen J. M. Souza H. I. Hurtig H. Ischiropoulos J. Q. Trojanowski V. M. Lee (2000) ArticleTitleOxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions Science 290 985–989 Occurrence Handle10.1126/science.290.5493.985 Occurrence Handle1:CAS:528:DC%2BD3cXnvVWkurY%3D Occurrence Handle11062131

    Article  CAS  PubMed  Google Scholar 

  49. V. N. Uversky G. Yamin L. A. Munishkina M. A. Karymov I. S. Millett S. Doniach Y. L. Lyubchenko A. L. Fink (2005) ArticleTitleEffects of nitration on the structure and aggregation of alpha-synuclein Brain Res. Mol. Brain Res. 134 84–102 Occurrence Handle1:CAS:528:DC%2BD2MXisFGmu7g%3D Occurrence Handle15790533

    CAS  PubMed  Google Scholar 

  50. H. M. Gao B. Liu W. Zhang J. S. Hong (2003a) ArticleTitleSynergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease FASEB J. 17 1957–1959 Occurrence Handle1:CAS:528:DC%2BD3sXot1KitLw%3D

    CAS  Google Scholar 

  51. H. M. Gao J. S. Hong W. Zhang B. Liu (2003b) ArticleTitleSynergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease J. Neurosci. 23 1228–1236 Occurrence Handle1:CAS:528:DC%2BD3sXit1ant7g%3D

    CAS  Google Scholar 

  52. D. C. Wu P. Teismann K. Tieu M. Vila V. Jackson-Lewis H. Ischiropoulos S. Przedborski (2003) ArticleTitleNADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease Proc. Natl. Acad. Sci. USA 100 6145–6150 Occurrence Handle1:CAS:528:DC%2BD3sXjvFOlur4%3D Occurrence Handle12721370

    CAS  PubMed  Google Scholar 

  53. G. Hebert J. Arsaut R. Dantzer J. Demotes-Mainard (2003) ArticleTitleTime-course of the expression of inflammatory cytokines and matrix metalloproteinases in the striatum and mesencephalon of mice injected with 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine, a dopaminergic neurotoxin Neurosci. Lett. 349 191–195 Occurrence Handle10.1016/S0304-3940(03)00832-2 Occurrence Handle1:CAS:528:DC%2BD3sXmvVyit7Y%3D Occurrence Handle12951201

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuchair Ebadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shavali, S., Combs, C.K. & Ebadi, M. Reactive Macrophages Increase Oxidative Stress and Alpha-Synuclein Nitration During Death of Dopaminergic Neuronal Cells in Co-Culture: Relevance to Parkinson’s Disease. Neurochem Res 31, 85–94 (2006). https://doi.org/10.1007/s11064-005-9233-x

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-005-9233-x

Keywords

Navigation