Skip to main content
Log in

Regulation of Long-Term Plasticity Induction by the Channel and C-Terminal Domains of GluN2 Subunits

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Conventional long-term potentiation (LTP) and long-term depression (LTD) are induced by different patterns of synaptic stimulation, but both forms of synaptic modification require calcium influx through NMDA receptors (NMDARs). A prevailing model (the “calcium hypothesis”) suggests that high postsynaptic calcium elevation results in LTP, whereas moderate elevations give rise to LTD. Recently, additional evidence has come to suggest that differential activation of NMDAR subunits also factors in determining which type of plasticity is induced. While the growing amount of data suggest that activation of NMDARs containing specific GluN2 subunits plays an important role in the induction of plasticity, it remains less clear which subunit is tied to which form of plasticity. Additionally, it remains to be determined which properties of the subunits confer upon them the ability to differentially induce long-term plasticity. This review highlights recent studies suggesting differential roles for the subunits, as well as findings that begin to shed light on how two similar subunits may be linked to the induction of opposing forms of plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hansen KB, Furukawa H, Traynelis SF (2010) Control of assembly and function of glutamate receptors by the amino-terminal domain. Mol Pharmacol 78:535–549

    Article  PubMed  CAS  Google Scholar 

  2. Collingridge GL, Olsen RW, Peters J, Spedding M (2009) A nomenclature for ligand-gated ion channels. Neuropharmacology 56:2–5

    Article  PubMed  CAS  Google Scholar 

  3. Herin GA, Aizenman E (2004) Amino terminal domain regulation of NMDA receptor function. Eur J Pharmacol 500:101–111

    Article  PubMed  CAS  Google Scholar 

  4. Al-Hallaq RA, Conrads TP, Veenstra TD, Wenthold RJ (2007) NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J Neurosci 27:8334–8343

    Article  PubMed  CAS  Google Scholar 

  5. Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781

    Article  PubMed  CAS  Google Scholar 

  6. Kohr G et al (2003) Intracellular domains of NMDA receptor subtypes are determinants for long-term potentiation induction. J Neurosci 23:10791–10799

    PubMed  Google Scholar 

  7. Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327–335

    Article  PubMed  CAS  Google Scholar 

  8. Perez-Otano I, Schulteis CT, Contractor A, Lipton SA, Trimmer JS, Sucher NJ, Heinemann SF (2001) Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci 21:1228–1237

    PubMed  CAS  Google Scholar 

  9. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540

    Article  PubMed  CAS  Google Scholar 

  10. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368:144–147

    Article  PubMed  CAS  Google Scholar 

  11. Flint AC, Maisch US, Weishaupt JH, Kriegstein AR, Monyer H (1997) NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci 17:2469–2476

    PubMed  CAS  Google Scholar 

  12. Rauner C, Köhr G (2011) Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-d-aspartate receptor population in adult hippocampal synapses. J Biol Chem 286:7558–7566

    Article  PubMed  CAS  Google Scholar 

  13. Dalby NO, Mody I (2003) Activation of NMDA receptors in rat dentate gyrus granule cells by spontaneous and evoked transmitter release. J Neurophysiol 90:786–797

    Article  PubMed  CAS  Google Scholar 

  14. Townsend M, Yoshii A, Mishina M, Constantine-Paton M (2003) Developmental loss of miniature N-methyl-d-aspartate receptor currents in NR2A knockout mice. Proc Natl Acad Sci USA 100:1340–1345

    Article  PubMed  CAS  Google Scholar 

  15. Tovar KR, Westbrook GL (1999) The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 19:4180–4188

    PubMed  CAS  Google Scholar 

  16. Harris AZ, Pettit DL (2007) Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices. J Physiol 584:509–519

    Article  PubMed  CAS  Google Scholar 

  17. Thomas CG, Miller AJ, Westbrook GL (2006) Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol 95:1727–1734

    Article  PubMed  CAS  Google Scholar 

  18. Miwa H, Fukaya M, Watabe AM, Watanabe M, Manabe T (2008) Functional contributions of synaptically localized NR2B subunits of the NMDA receptor to synaptic transmission and long-term potentiation in the adult mouse CNS. J Physiol 586:2539–2550

    Article  PubMed  CAS  Google Scholar 

  19. Sprengel R, Single FN (1999) Mice with genetically modified NMDA and AMPA receptors. Ann NY Acad Sci 868:494–501

    Article  PubMed  CAS  Google Scholar 

  20. Sakimura K et al (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373:151–155

    Article  PubMed  CAS  Google Scholar 

  21. Liu G, Tsien JZ, Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M (1999) Genetic enhancement of learning and memory in mice. Nature 401:63–69

    Article  PubMed  CAS  Google Scholar 

  22. Hrabetova S, Charlton Sacktor T (1997) Long-term potentiation and long-term depression are induced through pharmacologically distinct NMDA receptors. Neurosci Lett 226:107–110

    Article  PubMed  CAS  Google Scholar 

  23. Hrabetova S, Serrano P, Blace N, Tse HW, Skifter DA, Jane DE, Monaghan DT, Sacktor TC (2000) Distinct NMDA receptor subpopulations contribute to long-term potentiation and long-term depression induction. J Neurosci 20:81RC

    Google Scholar 

  24. Fischer G, Mutel V, Trube G, Malherbe P, Kew JNC, Mohacsi E, Heitz MP, Kemp JA (1997) Ro 25-6981, a highly potent and selective blocker of N-methyl-d-aspartate receptors containing the NR2B subunit. Characterization in vitro. J Pharmacol Exp Ther 283:1285–1292

    PubMed  CAS  Google Scholar 

  25. Williams K (1993) Ifenprodil discriminates subtypes of the N-methyl-d-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 44:851

    PubMed  CAS  Google Scholar 

  26. Auberson YP, Allgeier H, Bischoff S, Lingenhoehl K, Moretti R, Schmutz M (2002) 5-Phosphonomethylquinoxalinediones as competitive NMDA receptor antagonists with a preference for the human 1A/2A, rather than 1A/2B receptor composition. Bioorg Med Chem Lett 12:1099–1102

    Article  PubMed  CAS  Google Scholar 

  27. Liu L (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304:1021–1024

    Article  PubMed  CAS  Google Scholar 

  28. Massey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, Molnar E, Collingridge GL, Bashir ZI (2004) Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 24:7821–7828

    Article  PubMed  CAS  Google Scholar 

  29. Fox CJ, Russell KI, Wang YT, Christie BR (2006) Contribution of NR2A and NR2B NMDA subunits to bidirectional synaptic plasticity in the hippocampus in vivo. Hippocampus 16:907–915

    Article  PubMed  CAS  Google Scholar 

  30. Izumi Y, Auberson YP, Zorumski CF (2006) Zinc modulates bidirectional hippocampal plasticity by effects on NMDA receptors. J Neurosci 26:7181–7188

    Article  PubMed  CAS  Google Scholar 

  31. Chen LW, Tse YC, Li C, Guan ZL, Lai CH, Yung KKL, Shum DKY, Chan YS (2006) Differential expression of NMDA and AMPA/KA receptor subunits in the inferior olive of postnatal rats. Brain Res 1067:103–114

    Article  PubMed  CAS  Google Scholar 

  32. Li P, Li Y-H, Han T-Z (2009) NR2A-containing NMDA receptors are required for LTP induction in rat dorsolateral striatum in vitro. Brain Res 1274:40–46

    Article  PubMed  CAS  Google Scholar 

  33. Barria A, Malinow R (2005) NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48:289–301

    Article  PubMed  CAS  Google Scholar 

  34. Bartlett TE et al (2007) Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus. Neuropharmacology 52:60–70

    Article  PubMed  CAS  Google Scholar 

  35. de Marchena J, Roberts AC, Middlebrooks PG, Valakh V, Yashiro K, Wilfley LR, Philpot BD (2008) NMDA receptor antagonists reveal age-dependent differences in the properties of visual cortical plasticity. J Neurophysiol 100:1936–1948

    Article  PubMed  CAS  Google Scholar 

  36. Romberg C, Raffel J, Martin L, Sprengel R, Seeburg PH, Rawlins JNP, Bannerman DM, Paulsen O (2009) Induction and expression of GluA1 (GluR-A)-independent LTP in the hippocampus. Eur J Neurosci 29:1141–1152

    Article  PubMed  Google Scholar 

  37. Zhao M-G et al (2005) Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron 47:859–872

    Article  PubMed  CAS  Google Scholar 

  38. Jin S-xue, Feig LA (2010) Long-term potentiation in the CA1 hippocampus induced by NR2A subunit-containing NMDA glutamate receptors is mediated by Ras-GRF2/Erk map kinase signaling. PLoS ONE 5:e11732

    Article  PubMed  CAS  Google Scholar 

  39. Berberich S, Punnakkal P, Jensen V, Pawlak V, Seeburg PH, Hvalby O, Kohr G (2005) Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation. J Neurosci 25:6907–6910

    Article  PubMed  CAS  Google Scholar 

  40. Schotanus SM, Chergui K (2008) Long-term potentiation in the nucleus accumbens requires both NR2A- and NR2B-containing N-methyl-d-aspartate receptors. Eur J Neurosci 27:1957–1964

    Article  PubMed  Google Scholar 

  41. Müller T, Albrecht D, Gebhardt C (2009) Both NR2A and NR2B subunits of the NMDA receptor are critical for long-term potentiation and long-term depression in the lateral amygdala of horizontal slices of adult mice. Learn Mem 16:395–405

    Article  PubMed  CAS  Google Scholar 

  42. Foster KA, McLaughlin N, Edbauer D, Phillips M, Bolton A, Constantine-Paton M, Sheng M (2010) Distinct roles of NR2A and NR2B cytoplasmic tails in long-term potentiation. J Neurosci 30:2676–2685

    Article  PubMed  CAS  Google Scholar 

  43. Zhang X-H, Wu L-J, Gong B, Ren M, Li B-M, Zhuo M (2008) Induction- and conditioning-protocol dependent involvement of NR2B-containing NMDA receptors in synaptic potentiation and contextual fear memory in the hippocampal CA1 region of rats. Mol Brain 1:9

    Article  PubMed  CAS  Google Scholar 

  44. Duffy S, Labrie V, Roder JC (2007) d-Serine augments NMDA-NR2B receptor-dependent hippocampal long-term depression and spatial reversal learning. Neuropsychopharmacology 33:1004–1018

    Article  PubMed  CAS  Google Scholar 

  45. Morishita W, Lu W, Smith GB, Nicoll RA, Bear MF, Malenka RC (2007) Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression. Neuropharmacology 52:71–76

    Article  PubMed  CAS  Google Scholar 

  46. Hendricson AW, Miao CLA, Lippmann MJ, Morrisett RA (2002) Ifenprodil and ethanol enhance NMDA receptor-dependent long-term depression. J Pharmacol Exp Ther 301:938–944

    Article  PubMed  CAS  Google Scholar 

  47. Kollen M, Dutar P, Jouvenceau A (2008) The magnitude of hippocampal long term depression depends on the synaptic location of activated NR2-containing N-methyl-d-aspartate receptors. Neuroscience 154:1308–1317

    Article  PubMed  CAS  Google Scholar 

  48. Toyoda H, Zhao MG, Zhuo M (2005) Roles of NMDA receptor NR2A and NR2B subtypes for long-term depression in the anterior cingulate cortex. Eur J Neurosci 22:485–494

    Article  PubMed  Google Scholar 

  49. Kim MJ, Dunah AW, Wang YT, Sheng M (2005) Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 46:745–760

    Article  PubMed  CAS  Google Scholar 

  50. Tigaret CM, Thalhammer A, Rast GF, Specht CG, Auberson YP, Stewart MG, Schoepfer R (2006) Subunit dependencies of N-methyl-d-aspartate (NMDA) receptor-induced α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. Mol Pharmacol 69:1251–1259

    Article  PubMed  CAS  Google Scholar 

  51. Yu SY, Wu DC, Zhan RZ (2010) GluN2B subunits of the NMDA receptor contribute to the AMPA receptor internalization during long-term depression in the lateral amygdala of juvenile rats. Neuroscience 171:1102–1108

    Article  PubMed  CAS  Google Scholar 

  52. Wong TP et al (2007) Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proc Natl Acad Sci 104:11471–11476

    Article  PubMed  CAS  Google Scholar 

  53. Ge Y, Dong Z, Bagot RC, Howland JG, Phillips AG, Wong TP, Wang YT (2010) Hippocampal long-term depression is required for the consolidation of spatial memory. Proc Natl Acad Sci 107:16697–16702

    Article  PubMed  CAS  Google Scholar 

  54. Neyton J, Paoletti P (2006) Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach. J Neurosci 26:1331–1333

    Article  PubMed  CAS  Google Scholar 

  55. Weitlauf C, Honse Y, Auberson YP, Mishina M, Lovinger DM, Winder DG (2005) Activation of NR2A-containing NMDA receptors is not obligatory for NMDA receptor-dependent long-term potentiation. J Neurosci 25:8386–8390

    Article  PubMed  CAS  Google Scholar 

  56. Hatton C, Paoletti P (2005) Modulation of triheteromeric NMDA receptors by N-terminal domain ligands. Neuron 46:261–274

    Article  PubMed  CAS  Google Scholar 

  57. Chazot PL, Lawrence S, Thompson CL (2002) Studies on the subtype selectivity of CP-101,606: evidence for two classes of NR2B-selective NMDA receptor antagonists. Neuropharmacology 42:319–324

    Article  PubMed  CAS  Google Scholar 

  58. Kew JN, Trube G, Kemp JA (1996) A novel mechanism of activity-dependent NMDA receptor antagonism describes the effect of ifenprodil in rat cultured cortical neurones. J Physiol 497:761–772

    PubMed  CAS  Google Scholar 

  59. Bettini E et al (2010) Identification and characterization of novel NMDA receptor antagonists selective for NR2A- over NR2B-containing receptors. J Pharmacol Exp Ther 335:636–644

    Article  PubMed  CAS  Google Scholar 

  60. Bear MF (2003) Bidirectional synaptic plasticity: from theory to reality. Philos Trans R Soc Lond B Biol Sci 358:649–655

    Article  PubMed  Google Scholar 

  61. Quinlan EM, Philpot BD, Huganir RL, Bear MF (1999) Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci 2:352–357

    Article  PubMed  CAS  Google Scholar 

  62. Quinlan EM, Olstein DH, Bear MF (1999) Bidirectional, experience-dependent regulation of N-methyl-d-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc Natl Acad Sci USA 96:12876–12880

    Article  PubMed  CAS  Google Scholar 

  63. Kirkwood A, Rioult MC, Bear MF (1996) Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381:526–528

    Article  PubMed  CAS  Google Scholar 

  64. Gambrill AC, Storey GP, Barria A (2010) Dynamic regulation of NMDA receptor transmission. J Neurophysiol 105:162–171

    Article  PubMed  CAS  Google Scholar 

  65. Lee M-C, Yasuda R, Ehlers MD (2010) Metaplasticity at single glutamatergic synapses. Neuron 66:859–870

    Article  PubMed  CAS  Google Scholar 

  66. Xu Z, Chen R-Q, Gu Q-H, Yan J-Z, Wang S-H, Liu S-Y, Lu W (2009) Metaplastic regulation of long-term potentiation/long-term depression threshold by activity-dependent changes of NR2A/NR2B ratio. J Neurosci 29:8764–8773

    Article  PubMed  CAS  Google Scholar 

  67. Lee FJS et al (2002) Dual regulation of NMDA receptor functions by direct protein–protein interactions with the dopamine D1 receptor. Cell 111:219–230

    Article  PubMed  CAS  Google Scholar 

  68. Varela JA, Hirsch SJ, Chapman D, Leverich LS, Greene RW (2009) D1/D5 modulation of synaptic NMDA receptor currents. J Neurosci 29:3109–3119

    Article  PubMed  CAS  Google Scholar 

  69. Stramiello M, Wagner JJ (2008) D1/5 receptor-mediated enhancement of LTP requires PKA, Src family kinases, and NR2B-containing NMDARs. Neuropharmacology 55:871–877

    Article  PubMed  CAS  Google Scholar 

  70. Hawasli AH et al (2007) Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat Neurosci 10:880–886

    Article  PubMed  CAS  Google Scholar 

  71. Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba K, Mishina M, Manabe T, Yamamoto T (2001) Characterization of Fyn-mediated tyrosine phosphorylation sites on GluRε2 (NR2B) subunit of the N-methyl-d-aspartate receptor. J Biol Chem 276:693–699

    Article  PubMed  CAS  Google Scholar 

  72. Rosenblum K, Dudai Y, Richter-Levin G (1996) Long-term potentiation increases tyrosine phosphorylation of the N-methyl-d-aspartate receptor subunit 2B in rat dentate gyrus in vivo. Proc Natl Acad Sci USA 93:10457–10460

    Article  PubMed  CAS  Google Scholar 

  73. Rostas JA, Brent VA, Voss K, Errington ML, Bliss TV, Gurd JW (1996) Enhanced tyrosine phosphorylation of the 2B subunit of the N-methyl-d-aspartate receptor in long-term potentiation. Proc Natl Acad Sci USA 93:10452–10456

    Article  PubMed  CAS  Google Scholar 

  74. Zhao J, Peng Y, Xu Z, Chen R-qing, Gu Q-hua, Chen Z, Lu W (2008) Synaptic metaplasticity through NMDA receptor lateral diffusion. J Neurosci 28:3060–3070

    Article  PubMed  CAS  Google Scholar 

  75. Woo NH, Teng HK, Siao C-J, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8:1069–1077

    Article  PubMed  CAS  Google Scholar 

  76. Ng D et al (2009) Neto1 is a novel CUB-domain NMDA receptor-interacting protein required for synaptic plasticity and learning. PLoS Biol 7:e1000041

    Google Scholar 

  77. Hammond MSL, Sims C, Parameshwaran K, Suppiramaniam V, Schachner M, Dityatev A (2006) Neural cell adhesion molecule-associated polysialic acid inhibits NR2B-containing N-methyl-d-aspartate receptors and prevents glutamate-induced cell death. J Biol Chem 281:34859–34869

    Article  PubMed  CAS  Google Scholar 

  78. Kochlamazashvili G et al (2010) Neural cell adhesion molecule-associated polysialic acid regulates synaptic plasticity and learning by restraining the signaling through GluN2B-Containing NMDA receptors. J Neurosci 30:4171–4183

    Article  PubMed  CAS  Google Scholar 

  79. Zhao J-P, Constantine-Paton M (2007) NR2A/mice lack long-term potentiation but retain NMDA receptor and L-type Ca2+ channel-dependent long-term depression in the juvenile superior colliculus. J Neurosci 27:13649–13654

    Article  PubMed  CAS  Google Scholar 

  80. Kutsuwada T et al (1996) Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 16:333–344

    Article  PubMed  CAS  Google Scholar 

  81. Vonengelhardt J et al (2008) Contribution of hippocampal and extra-hippocampal NR2B-containing NMDA receptors to performance on spatial learning tasks. Neuron 60:846–860

    Article  CAS  Google Scholar 

  82. Brigman JL et al (2010) Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neurosci 30:4590–4600

    Article  PubMed  CAS  Google Scholar 

  83. Wang D, Cui Z, Zeng Q, Kuang H, Wang LP, Tsien JZ, Cao X (2009) Genetic enhancement of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats. PLoS ONE 4:e7486

    Article  PubMed  CAS  Google Scholar 

  84. Gardoni F et al (2009) Decreased NR2B subunit synaptic levels cause impaired long-term potentiation but not long-term depression. J Neurosci 29:669–677

    Article  PubMed  CAS  Google Scholar 

  85. Erreger K, Dravid SM, Banke TG, Wyllie DJA, Traynelis SF (2005) Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol 563:345–358

    Article  PubMed  CAS  Google Scholar 

  86. Vicini S, Wang JF, Li JH, Zhu WJ, Wang YH, Luo JH, Wolfe BB, Grayson DR (1998) Functional and pharmacological differences between recombinant N-methyl-d-aspartate receptors. J Neurophysiol 79:555–566

    PubMed  CAS  Google Scholar 

  87. Prybylowski K, Fu Z, Losi G, Hawkins LM, Luo J, Chang K, Wenthold RJ, Vicini S (2002) Relationship between availability of NMDA receptor subunits and their expression at the synapse. J Neurosci 22:8902–8910

    PubMed  CAS  Google Scholar 

  88. Sobczyk A, Scheuss V, Svoboda K (2005) NMDA receptor subunit-dependent [Ca2+] signaling in individual hippocampal dendritic spines. J Neurosci 25:6037–6046

    Article  PubMed  CAS  Google Scholar 

  89. Berberich S, Jensen V, Hvalby Ø, Seeburg PH, Köhr G (2007) The role of NMDAR subtypes and charge transfer during hippocampal LTP induction. Neuropharmacology 52:77–86

    Article  PubMed  CAS  Google Scholar 

  90. Strack S, Choi S, Lovinger DM, Colbran RJ (1997) Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. J Biol Chem 272:13467–13470

    Article  PubMed  CAS  Google Scholar 

  91. Leonard AS, Lim IA, Hemsworth DE, Horne MC, Hell JW (1999) Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 96:3239–3244

    Article  PubMed  CAS  Google Scholar 

  92. Bayer KU, De Koninck P, Leonard AS, Hell JW, Schulman H (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411:801–805

    Article  PubMed  CAS  Google Scholar 

  93. Omkumar RV, Kiely MJ, Rosenstein AJ, Min K-T, Kennedy MB (1996) Identification of a phosphorylation site for calcium/calmodulin-dependent protein kinase II in the NR2B subunit of the N-methyl-d-aspartate receptor. J Biol Chem 271:31670–31678

    Article  PubMed  CAS  Google Scholar 

  94. Liao G-Y, Wagner DA, Hsu MH, Leonard JP (2001) Evidence for direct protein kinase-C mediated modulation of N-methyl-d-aspartate receptor current. Mol Pharmacol 59:960–964

    PubMed  CAS  Google Scholar 

  95. Strack S, McNeill RB, Colbran RJ (2000) Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of the N-methyl-d-aspartate receptor. J Biol Chem 275:23798–23806

    Article  PubMed  CAS  Google Scholar 

  96. Sessoms-Sikes S, Honse Y, Lovinger DM, Colbran RJ (2005) CaMKII[alpha] enhances the desensitization of NR2B-containing NMDA receptors by an autophosphorylation-dependent mechanism. Mol Cell Neurosci 29:139–147

    Article  PubMed  CAS  Google Scholar 

  97. Wyszynski M, Lin J, Rao A, Nigh E, Beggs AH, Craig AM, Sheng M (1997) Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385:439–442

    Article  PubMed  CAS  Google Scholar 

  98. Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, Ben-Ari Y, Clapham DE, Medina I (2003) The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 40:775–784

    Article  PubMed  CAS  Google Scholar 

  99. Li S, Tian X, Hartley DM, Feig LA (2006) Distinct roles for Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and Ras-GRF2 in the induction of long-term potentiation and long-term depression. J Neurosci 26:1721–1729

    Article  PubMed  CAS  Google Scholar 

  100. Prybylowski K, Chang K, Sans N, Kan L, Vicini S, Wenthold RJ (2005) The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47:845–857

    Article  PubMed  CAS  Google Scholar 

  101. Steigerwald F, Schulz TW, Schenker LT, Kennedy MB, Seeburg PH, Kohr G (2000) C-terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors. J Neurosci 20:4573–4581

    PubMed  CAS  Google Scholar 

  102. Sprengel R et al (1998) Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92:279–289

    Article  PubMed  CAS  Google Scholar 

  103. Elias GM, Nicoll RA (2007) Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins. Trends Cell Biol 17:343–352

    Article  PubMed  CAS  Google Scholar 

  104. Howard MA, Elias GM, Elias LAB, Swat W, Nicoll RA (2010) The role of SAP97 in synaptic glutamate receptor dynamics. Proc Natl Acad Sci USA 107:3805–3810

    Article  PubMed  CAS  Google Scholar 

  105. Sans N, Petralia RS, Wang Y-X, Blahos J, Hell JW, Wenthold RJ (2000) A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J Neurosci 20:1260–1271

    PubMed  CAS  Google Scholar 

  106. Chung HJ, Huang YH, Lau L-F, Huganir RL (2004) Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J Neurosci 24:10248–10259

    Article  PubMed  CAS  Google Scholar 

  107. Sanz-Clemente A, Matta JA, Isaac JTR, Roche KW (2010) Casein kinase 2 regulates the NR2 subunit composition of synaptic NMDA receptors. Neuron 67:984–996

    Article  PubMed  CAS  Google Scholar 

  108. Rumbaugh G, Adams JP, Kim JH, Huganir RL (2006) SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons. Proc Natl Acad Sci USA 103:4344–4351

    Article  PubMed  CAS  Google Scholar 

  109. Kim JH, Lee H-K, Takamiya K, Huganir RL (2003) The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity. J Neurosci 23:1119–1124

    PubMed  CAS  Google Scholar 

  110. Komiyama NH et al (2002) SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci 22:9721–9732

    PubMed  CAS  Google Scholar 

  111. Kim JH, Liao D, Lau L-F, Huganir RL (1998) SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20:683–691

    Article  PubMed  CAS  Google Scholar 

  112. Suzuki T, Li W, Zhang J, Tian Q, Sakagami H, Usada N, Kondo H, Fujii T, Endo S (2005) A novel scaffold protein, TANC, possibly a rat homolog of Drosophila rolling pebbles (rols), forms a multiprotein complex with various postsynaptic density proteins. Eur J Neurosci 21:339–350

    Article  PubMed  Google Scholar 

  113. Han S et al (2010) Regulation of dendritic spines, spatial memory, and embryonic development by the TANC family of PSD-95-interacting proteins. J Neurosci 30:15102–15112

    Article  PubMed  CAS  Google Scholar 

  114. Robison AJ, Bass MA, Jiao Y, MacMillan LB, Carmody LC, Bartlett RK, Colbran RJ (2005) Multivalent interactions of calcium/calmodulin-dependent protein kinase II with the postsynaptic density proteins NR2B, densin-180, and α-actinin-2. J Biol Chem 280:35329–35336

    Article  PubMed  CAS  Google Scholar 

  115. Christopherson KS, Hillier BJ, Lim WA, Bredt DS (1999) PSD-95 assembles a ternary complex with the N-methyl-d-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274:27467–27473

    Article  PubMed  CAS  Google Scholar 

  116. Tu JC et al (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23:583–592

    Article  PubMed  CAS  Google Scholar 

  117. Dobrosotskaya IY, James GL (2000) MAGI-1 interacts with [beta]-catenin and is associated with cell–cell adhesion structures. Biochem Biophys Res Commun 270:903–909

    Article  PubMed  CAS  Google Scholar 

  118. Hirao K, Hata Y, Yao I, Deguchi M, Kawabe H, Mizoguchi A, Takai Y (2000) Three isoforms of synaptic scaffolding molecule and their characterization. J Biol Chem 275:2966–2972

    Article  PubMed  CAS  Google Scholar 

  119. El-Husseini AE-D, Bredt DS (2002) Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci 3:791–802

    Article  CAS  Google Scholar 

  120. Lu W, Man H, Ju W, Trimble WS, MacDonald JF, Wang YT (2001) Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29:243–254

    Article  PubMed  CAS  Google Scholar 

  121. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5(5):405–414

    PubMed  CAS  Google Scholar 

  122. Ivanov A, Pellegrino C, Rama S, Dumalska I, Salyha Y, Ben-Ari Y, Medina I (2006) Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J Physiol 572:789–798

    PubMed  CAS  Google Scholar 

  123. Swanwick CC, Shapiro ME, Yi Z, Chang K, Wenthold RJ (2009) NMDA receptors interact with flotillin-1 and -2, lipid raft-associated proteins. FEBS Lett 583:1226–1230

    Article  PubMed  CAS  Google Scholar 

  124. Delint-Ramirez I, Fernandez E, Bayes A, Kicsi E, Komiyama NH, Grant SGN (2010) In vivo composition of NMDA receptor signaling complexes differs between membrane subdomains and is modulated by PSD-95 and PSD-93. J Neurosci 30:8162–8170

    Article  PubMed  CAS  Google Scholar 

  125. Moody TD, Watabe AM, Indersmitten T, Komiyama NH, Grant SGN, O’Dell TJ (2011) Adrenergic receptor activation rescues theta frequency stimulation-induced LTP deficits in mice expressing C-terminally truncated NMDA receptor GluN2A subunits. Learn Mem 18:118–127

    Article  PubMed  CAS  Google Scholar 

  126. Alvarez VA, Ridenour DA, Sabatini BL (2007) Distinct structural and ionotropic roles of NMDA receptors in controlling spine and synapse stability. J Neurosci 27:7365–7376

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly A. Foster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fetterolf, F., Foster, K.A. Regulation of Long-Term Plasticity Induction by the Channel and C-Terminal Domains of GluN2 Subunits. Mol Neurobiol 44, 71–82 (2011). https://doi.org/10.1007/s12035-011-8190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-011-8190-4

Keywords

Navigation