Skip to main content
Log in

Consequences of magnesium incorporation on structural and optoelectronic properties of wurtzite cadmium sulphide: a first-principle-based theoretical study for UV optoelectronic applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Consequences of incorporation of magnesium atom(s) on structural and optoelectronic properties of wurtzite cadmium sulphide have been investigated from first-principle calculations. Like direct (Γ–Γ) band-gap end binary wurtzite cadmium and magnesium sulphide semiconductors, such incorporation also results in stable direct (Γ–Γ) band-gap wurtzite MgxCd1−xS semiconductor ternary alloys with band-gaps residing in the UV spectral region. Lattice constants (a0, c0) of specimens within the w-MgxCd1−xS system nonlinearly reduce, while fundamental band-gap (Eg) enhances with increasing Mg content. Optical characteristics of optically anisotropic wurtzite crystals are studied mainly with ordinary and extraordinary components of real and imaginary parts of the complex dielectric function and some other dependent optical parameters. Electronic transitions from valence S-3p to Mg-4s, Mg-4p, Cd-5s and Cd-4p states of conduction band jointly result in optical features of the ternary alloys. Each uniaxial wurtzite crystal shows birefringence. Optical energy gap (Eopt) of each ternary alloy, higher than the corresponding Eg, lies in the UV region. Calculated components of static optical constants for ternary alloys become lower, but critical point energies become higher for larger band-gap specimen and vice versa. High optical absorption of direct band-gap ternary alloys in the UV region leads them as a compatible semiconductor for fabricating faster UV optoelectronic devices with high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Zelaya-Angel O and Lozada-Morales R 2000 Phys. Rev. B 62 13064

    Article  CAS  Google Scholar 

  2. Villars P and Calvert L D 1985 Pearson’s handbook of crystallographic data for intermetallic phases (USA: American Society of Metals, Metals Park, OH)

  3. Sing V and Chauhan P 2009 Chalcogen. Lett. 6 421

    Google Scholar 

  4. Cao H, Wang G, Zhang S, Zhang X and Rabinovich D 2006 Inorg. Chem. 45 5103

    Article  CAS  Google Scholar 

  5. Ekbundit S, Chizmeshya A, Violette R L and Wolf G H 1996 J. Phys. Cond. Mater. 8 8251

    Article  CAS  Google Scholar 

  6. Al-Bassam A A I, Al-Juffali A A and Al-Dhafiri A M 1994 J. Crystal Growth 135 476

    Article  CAS  Google Scholar 

  7. Zhao R, Yang T, Luo Y, Chuai M, Wu X, Zhang Y et al 2017 RSC Adv. 7 31433

    Article  CAS  Google Scholar 

  8. Ohata K, Saraie J and Tanaka T 1973 Jpn. J. Appl. Phys. 12 1198

    Article  CAS  Google Scholar 

  9. Cook W R Jr 1968 J. Am. Ceram. Soc. 51 518

    Article  CAS  Google Scholar 

  10. Medelung O, Schulz M and Weiss H (eds) 1982 Landolt Bornstein: numerical data and functional relationship in science and technology, vol 17b. (Berlin: Springer)

    Google Scholar 

  11. Xu Y N and Ching W Y 1993 Phys. Rev. B 48 4335

    Article  CAS  Google Scholar 

  12. Rajeshwar R, de Tacconi K N and Chenthamarakshan C R 2001 Chem. Mater. 13 2765

    Article  CAS  Google Scholar 

  13. Madelung O 2004 Semiconductors data handbook (New York: Springer)

    Book  Google Scholar 

  14. Mittendorf H 1965 Z. Physik 183 113

    Article  CAS  Google Scholar 

  15. Lawaetz P 1972 Phys. Rev. B 5 4039

    Article  Google Scholar 

  16. Okuyama H, Kishita Y and Ishibashi A 1998 Phys. Rev. B 57 2257

    Article  CAS  Google Scholar 

  17. Wu J C, Zheng J, Zacherl C L, Wu P, Liu Z K and Xu R 2011 J. Phys. Chem. C 115 19741

    Article  CAS  Google Scholar 

  18. Arif G E, Abdullah F A and Al-Douri Y 2013 Procedia Eng. 53 707

    Article  Google Scholar 

  19. Lany S 2014 Proc. SPIE 8987 89870K

    Google Scholar 

  20. Yeh C Y, Lu Z W, Froyen S and Zunger A 1992 Phys. Rev. B 46 10086

    Article  CAS  Google Scholar 

  21. Huang J D, Liu J Y and Han K L 2012 Int. J. Hydrogen Energy 37 17870

    Article  CAS  Google Scholar 

  22. Wei S H and Zhang S B 2000 Phys. Rev. B 62 6944

    Article  CAS  Google Scholar 

  23. Gokoglu G, Durandurdu M and Gulseren O 2009 Comput. Mater. Sci. 47 593

    Article  CAS  Google Scholar 

  24. Lee S G and Chang K J 1995 Phys. Rev. B 52 1918

    Article  CAS  Google Scholar 

  25. Duman S, Bagci S, Tutuncu H M and Srivastava G P 2007 Phys. Stat. Sol. C 4 598

    CAS  Google Scholar 

  26. Duman S, Bagci S, Tutuncu H M and Srivastava G P 2006 Phys. Rev. B 73 20520

    Article  Google Scholar 

  27. Rached D, Benkhettou N, Soudini B, Abbar B, Sekkal N and Driz M 2003 Phys. Stat. Sol. B 240 565

    Article  CAS  Google Scholar 

  28. Chakrabarti A 2000 Phys. Rev. B 62 1806

    Article  CAS  Google Scholar 

  29. Tairi L, Touam S, Boumaza A, Boukhtouta A, Meradji H, Ghemid S et al 2017 Phase Transition 90 929

    Article  CAS  Google Scholar 

  30. Blaha P, Schwarz K, Madsen G H, Kbasnicka D and Luitz J 2001 In: FP-LAPW+lo program for calculating crystal properties K Schwarz (ed) 2nd edn (Vienna: Vienna University of Technology)

  31. Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864

    Article  Google Scholar 

  32. Kohn W and Sham L J 1965 Phys. Rev. 140 A1133

    Article  Google Scholar 

  33. Andersen O K 1975 Phys. Rev. B 42 3063

    Google Scholar 

  34. Wu Z and Cohen E R 2006 Phys. Rev. B 73 235116

    Article  Google Scholar 

  35. Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401

    Article  Google Scholar 

  36. Kokalj A 2003 Comput. Mater. Sci. 28 155

    Article  CAS  Google Scholar 

  37. Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244

    Article  CAS  Google Scholar 

  38. Dismukes J P, Ekstrom L and Paff R J 1964 J. Phys. Chem. 68 3021

    Article  CAS  Google Scholar 

  39. Vegard L 1921 Z. Phys. 5 17

    Article  CAS  Google Scholar 

  40. Ahmadian F and Salary A 2016 J. Kor. Phys. Soc. 68 227

    Article  CAS  Google Scholar 

  41. Murtaza G, Ahmad I, Amin B, Afaq A, Ghafoor F and Benamrani A 2011 Physica B 406 2632

    Article  CAS  Google Scholar 

  42. Ashcroft N W and Mermin N D 1976 Solid State Physics (New York: Harcourt Brace College Publishers)

    Google Scholar 

  43. Fox M 2001 Optical properties of solids (UK: Oxford University Press)

    Google Scholar 

  44. Khan I, Ahmad I, Aliabad H A R, Asadabadi S J, Ali Z and Maqbool M 2013 Comput. Mater. Sci. 77 145

    Article  CAS  Google Scholar 

  45. Mott N F and Davis E A 1979 Electronic processes in non-crystalline materials (Oxford: Clarendon Press)

    Google Scholar 

  46. Tauc J 1974 Amorphous and liquid semiconductors (New York: Plenum)

    Book  Google Scholar 

  47. Penn D R 1962 Phys. Rev. 128 2093

    Article  CAS  Google Scholar 

  48. Debbarma M, Debnath B, Ghosh D, Chanda S, Bhattacharjee R and Chattopadhyaya S 2019 J. Phys. Chem. Sol. 131 86

    Article  CAS  Google Scholar 

  49. Dressel M and Gruner G 2001 Electrodynamics of solids (Cambridge: Cambridge University Press)

    Google Scholar 

Download references

Acknowledgements

Manish Debbarma is very much grateful to CSIR, Government of India, for granting CSIR Senior Research Fellowship (NET) [No. 09/714(0021)/2019-EMR-I].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Chattopadhyaya.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, U., Debbarma, M., Ghosh, D. et al. Consequences of magnesium incorporation on structural and optoelectronic properties of wurtzite cadmium sulphide: a first-principle-based theoretical study for UV optoelectronic applications. Bull Mater Sci 47, 19 (2024). https://doi.org/10.1007/s12034-023-03123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03123-x

Keywords

Navigation