Skip to main content
Log in

Theoretical investigation of magnesium compositional variation of structural and optoelectronic properties of wurtzite MgxZn1−xSe ternary alloys through first-principle calculations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

First-principle calculations are carried out to explore magnesium composition-dependent structural and optoelectronic features of wurtzite MgxZn1−xSe ternary alloys. Analyses show a nearly linear enhancement in lattice constants (a0, c0) but a reasonably nonlinear reduction in bulk modulus (B0) with increasing Mg composition. Successive incorporation of Mg atom(s) in place of Zn in the w-ZnSe crystal results in three direct-band gap (Γ–Γ) semiconductor ternary alloys. The fundamental band gap shows fairly nonlinear enhancement with increasing Mg composition. Each of the considered wurtzite specimens is optically anisotropic. The computed components of the refractive index give uniaxial birefringence. Peaks in the dielectric function spectrum of all the specimens in the ultraviolet (UV) region are contributed exclusively or collectively by Se-4p to Mg-4s, 3p and Zn-5s, 4p electronic excitations. With the enhancement in the fundamental band gap, static optical constants ε1(0), n(0) and R(0) of the specimens reduce, while critical point energy in their ε2(ω), k(ω), σ(ω), α(ω) spectra enhances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. O Medelung (Ed.), Landolt Bornstein: Numerical data and functional relationship in science and technology (Springer, Berlin, 1982) Vol. 17b

  2. V H Mittendorf, Z. Phys. 183, 113 (1965)

    Article  ADS  Google Scholar 

  3. H Elsayed, D Olguın, A Cantarero and I Hernandez-Calderon, Phys. Status Solidi B 252, 663 (2015)

    Article  ADS  Google Scholar 

  4. W M Yim and E J Stofko, J. Electrochem. Soc. 119, 381 (1972)

    Article  ADS  Google Scholar 

  5. Y S Park and F L Chan, J. Appl. Phys. 36, 800 (1965)

    Article  ADS  Google Scholar 

  6. X Zhang, D Wang, M Beres, L Liu, Z Ma, P Y Yu and S S Mao, Appl. Phys. Lett. 103, 082111 (2013)

    Article  ADS  Google Scholar 

  7. H I Wang, W T Tang, L W Liao, P S Tseng, C W Luo, C S Yang and T K Kobayashi, J. Nanomater. 2012, 1 (2012)

    Google Scholar 

  8. L V Atroshchenko, E F Voronkin, S N Galkin, A I Lalayants, I A Rybalka, V D Ryzhikov and A G Fedorov, Inorg. Mater. 40, 563 (2004)

    Article  Google Scholar 

  9. P Lawaetz, Phys. Rev. B 5, 4039 (1972)

    Article  ADS  Google Scholar 

  10. S Duman, S Bagci, H M Tutuncu and G P Srivastava, Phys. Rev. B 73, 205201 (2006)

    Article  ADS  Google Scholar 

  11. G Gokoglu, M Durandurdu and O Gulseren, Comput. Mater. Sci. 47, 593 (2009)

    Article  Google Scholar 

  12. P E Van Camp and V E Van Doren, Phys. Rev. B 55, 775 (1997)

    Article  ADS  Google Scholar 

  13. R Pandey and A Sutjianto, Solid State Commun. 91, 269 (1994)

    Article  ADS  Google Scholar 

  14. D Rached, N Benkhettou, B Soudini, B Abbar, N Sekkal and M Driz, Phys. Status Solidi B 240, 565 (2003)

    Article  ADS  Google Scholar 

  15. A Chakrabarti, Phys. Rev. B 62, 1806 (2000)

    Article  ADS  Google Scholar 

  16. S H Mir, P C Jha, S Dabhi and P K Jha, Mater. Chem. Phys. 175, 54 (2016)

    Article  Google Scholar 

  17. L Tairi, S Touam, A Boumaza, M Boukhtouta, H Meradji, S Ghemid, S Bin Omran, F El Haj Hassan and R Khenata, Phase Transit. 90, 929 (2017)

    Article  Google Scholar 

  18. S G Lee and K J Chang, Phys. Rev. B 52, 1918 (1995)

    Article  ADS  Google Scholar 

  19. C Y Yeh, Z W Lu, S Froyen and A Zunger, Phys. Rev. B 46, 10086 (1992)

    Article  ADS  Google Scholar 

  20. O Zakharov, A Rubio, X Blase, M L Cohen and S G Louie, Phys. Rev. B 50, 10780 (1994)

    Article  ADS  Google Scholar 

  21. S Zh Karazhanov, P Ravindran, A Kjekshus, H Fjellvag, U Grossner and B G Svensson, J. Appl. Phys. 100, 043709 (2006)

    Article  ADS  Google Scholar 

  22. I Khan, I Ahmad, H A R Aliabad and M Maqbool, arXiv:1201.0870 [cond-mat.str-el] (2012)

  23. S Zh Karazhanov, P Ravindran, A Kjekshus H Fjellvag and B G Svensson, arXiv:0705.2550v1 [cond-mat.soft] ( 2007)

  24. H Momida and T Oguchi, Appl. Phys. Exp. 11, 041201 (2018)

    Article  ADS  Google Scholar 

  25. P Hohenberg and W Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  26. W Kohn and L J Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  27. O K Andersen, Phys. Rev. B 42, 3063 (1975)

    Google Scholar 

  28. P Blaha, K Schwarz, G H Madsen, D Kbasnicka and J Luitz, FP-LAPW+lo program for calculating crystal properties edited by K Schwarz (Techn. WIEN2K, Austria, 2001)

  29. Z Wu and E R Cohen, Phys. Rev. B 73, 235116 (2006)

    Article  ADS  Google Scholar 

  30. F Tran and P Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  31. A Kokalj, Comput. Mater. Sci. 28, 155 (2003)

    Article  Google Scholar 

  32. F D Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  ADS  Google Scholar 

  33. L Vegard, Z. Phys. 5, 17 (1921)

    Article  ADS  Google Scholar 

  34. G Murtaza, I Ahmad, B Amin, A Afaq, F Ghafoor and A Benamrani, Physica B 406, 2632 (2011)

    Article  ADS  Google Scholar 

  35. F Ahmadian and A Salary, J. Kor. Phys. Soc. 68, 227 (2016)

    Article  ADS  Google Scholar 

  36. N W Ashcroft and N D Mermin, Solid state physics (Harcourt Brace College Publishers, New York, 1976)

    MATH  Google Scholar 

  37. M Fox, Optical properties of solids (Oxford University Press, UK, 2001)

    Google Scholar 

  38. I Khan, I Ahmad, H A R Aliabad, S J Asadabadi, Z Ali and M Maqbool, Comput. Mater. Sci. 77, 145 (2013)

    Article  Google Scholar 

  39. D R Penn, Phys. Rev. 128, 2093 (1962)

    Article  ADS  Google Scholar 

  40. V P Gupta and N M Ravindra, Phys. Status Solidi B 10, 715 (1980)

    Article  ADS  Google Scholar 

  41. N M Ravindra, S Auluck and V K Srivastava, Phys. Status Solidi B 93, K155 (1979)

    Article  ADS  Google Scholar 

  42. J P L Herve and L K J Vandamme, Infrared Phys. Technol. 35, 609 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Chattopadhyaya.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5510 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, U., Debbarma, M., Ghosh, D. et al. Theoretical investigation of magnesium compositional variation of structural and optoelectronic properties of wurtzite MgxZn1−xSe ternary alloys through first-principle calculations. Pramana - J Phys 96, 171 (2022). https://doi.org/10.1007/s12043-022-02407-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02407-x

Keywords

PACS Nos

Navigation