Skip to main content
Log in

Hydrogen storage properties of Al-containing Ti2CrV alloys

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, influence of Al substitution on hydrogen storage properties of Ti2CrV alloy has been investigated in detail. The alloys Ti2–xCrVAlx (x = 0.05, 0.1) were synthesized by arc melting method, and composition, type of crystal structure and hydrogen storage properties were evaluated. X-ray diffraction studies confirmed that all the alloys form single-phase bcc structures. Ti1.95CrVAl0.05 alloy is found to absorb a maximum of 3.9 wt% of hydrogen at room temperature and moderate hydrogen pressure. The plateau pressure of the studied alloys increases with an increase in Al concentration. The results confirm that among the studied alloys, Ti1.95CrVAl0.05 alloy shows the fastest hydrogen absorption kinetics and improved cyclic stability with a marginal decrease in total hydrogen absorption capacity compared to the parent alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Jena P 2011 J. Phys. Chem. Lett. 2 206

    Article  CAS  Google Scholar 

  2. Mazloomi K and Gomes C 2012 Renew. Sustain. Energy Rev. 16 3024

    Article  CAS  Google Scholar 

  3. Yuan Z, Zhang W, Zhang P, Zhang Y, Bu W, Guo S et al 2017 RSC Adv. 7 56365

    Article  CAS  Google Scholar 

  4. Zhang J, Yan S and Qu H 2018 Int. J. Hydrogen Energy 43 1545

    Article  CAS  Google Scholar 

  5. Stanislava T, Borislav A, Vesselina R, Lyuben M, Evelina V, Konstantin P et al 2021 Materials 14 14

    Google Scholar 

  6. Yang T, Li Q, Liu N, Liang C Y, Yin F X and Zhang Y H 2018 J. Power Sources 378 636

    Article  CAS  Google Scholar 

  7. Sakintuna B, Farida L D and Michael H 2007 Int. J. Hydrogen Energy 32 1121

    Article  CAS  Google Scholar 

  8. Gambini M, Manno M and Vellini M 2008 Int. J. Hydrogen Energy 33 6178

    Article  CAS  Google Scholar 

  9. Iba H and Akiba E 1997 J. Alloys Compd. 253–254 21

    Article  Google Scholar 

  10. Basak S, Shashikala K, Sengupta P and Kulshreshtha S K 2007 Int. J. Hydrogen Energy 32 4973

    Article  CAS  Google Scholar 

  11. Yoo J H, Shim G, Cho S W and Park C N 2007 Int. J. Hydrogen Energy 32 2977

    Article  CAS  Google Scholar 

  12. Zhou P, Cao Z, Xi X, Zhan L, Li S, Li Z et al 2021 J. Alloys Compd. 875 160035

    Article  CAS  Google Scholar 

  13. Miraglia S, De Rango P, Rivoirard S, Fruchart D, Charbonnier J and Skryabina N 2012 J. Alloys Compd. 536 1

    Article  CAS  Google Scholar 

  14. Edalati K, Novelli M, Itano S, Li H W, Akiba E, Horita Z et al 2018 J. Alloys Compd. 737 337

    Article  CAS  Google Scholar 

  15. Park J Y, Park C N, Park C J and Choi J 2007 Int. J. Hydrogen Energy 32 4215

    Article  CAS  Google Scholar 

  16. Cho S W, Han C S, Park C N and Akiba E 1999 J. Alloys Compd. 288 294

    Article  CAS  Google Scholar 

  17. Martinez A and Dos Santos D S 2012 Mater. Res. Bull. 15 809

    Article  CAS  Google Scholar 

  18. Sleiman S and Huot J 2017 Inorganics 5 86

    Article  Google Scholar 

  19. Amariz A M and Ballesteros D P 2019 J. Phys. Conf. Ser. 1386 12052

    Article  Google Scholar 

  20. Sleiman S, Aliouat A and Huot J 2020 Materials 3 106

    Google Scholar 

  21. Cho S W, Shim G, Choi G S, Park C N, Yoo J H and Choi J 2007 J. Alloys Compd. 430 136

    Article  CAS  Google Scholar 

  22. Singh B K, Shim G and Cho S W 2007 Int. J. Hydrogen Energy 32 49615

    Google Scholar 

  23. Kumar A, Shashikala K, Banerjee S, Nuwad J, Das P and Pillai C G S 2012 Int. J. Hydrogen Energy 37 3677

    Article  CAS  Google Scholar 

  24. Kumar A, Banerjee S, Pillai C G S and Bharadwaj S R 2013 Int. J. Hydrogen Energy 38 13335

    Article  CAS  Google Scholar 

  25. Banerjee S, Kumar A, Ruz P and Sengupta P 2017 Int. J. Hydrogen Energy 41–40 18130

    Google Scholar 

  26. Ruz P, Banerjee S, Halder R, Kumar A and Sudarsan V 2017 Int. J. Hydrogen Energy 36 3677

    Google Scholar 

  27. Shashikala K, Banerjee S, Kumar A, Pai M R and Pillai C G S 2009 Int. J. Hydrogen Energy 34 6684

    Article  CAS  Google Scholar 

  28. Asano K, Hayashi S and Nakamura Y 2015 Acta Mater. 83 479

    Article  CAS  Google Scholar 

  29. Yigang Y, Yungui C, Hao L, Chaoling W, Mingda T and Tu M 2006 J. Alloys Compd. 426 253

    Article  Google Scholar 

  30. Luo L, Li Y, Zhai T, Hu F, Zhao Z, Bian X et al 2019 Int. J. Hydrogen Energy 44 25188

    Article  CAS  Google Scholar 

  31. Wu E D, Li W H and Li J 2012 Int. J. Hydrogen Energy 37 1509

    Article  CAS  Google Scholar 

  32. Shannon R D 1976 Acta Cryst. 32 751

    Article  Google Scholar 

  33. Kulshreshtha S K, Jayakumar O D and Sudarsan V 2004 J. Phys. Chem. Solid 65 1141

    Article  CAS  Google Scholar 

  34. Lim S H and Lee J Y 1984 J. Less Common Met. 97 65

    Article  CAS  Google Scholar 

  35. Li Q, Chou K C, Lin Q, Jiang L J and Zhan F 2004 Int. J. Hydrogen Energy 29 1383

    Article  CAS  Google Scholar 

  36. Pang Y P and Li Q 2016 Int. J. Hydrogen Energy 41 18072

    Article  CAS  Google Scholar 

  37. Lin H C, Lin K M, Wu K C, Hsiung H H and Tsai H K 2007 Int. J. Hydrogen Energy 32 4966

    Article  CAS  Google Scholar 

  38. Ulmer U, Asano K, Andreas P, Enoki H, Nakamura Y, Pohl A et al 2015 J. Alloys Compd. 648 1024

    Article  CAS  Google Scholar 

  39. Zhou C, Fang Z Z and Bowman R C 2015 J. Phys. Chem. C 119 22261

    Article  CAS  Google Scholar 

  40. Nakamura H, Nakamura Y, Fujitani S and Yonezu I 1996 Int. J. Hydrogen Energy 21 457

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Sudarsan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Banerjee, S., Ruz, P. et al. Hydrogen storage properties of Al-containing Ti2CrV alloys. Bull Mater Sci 47, 8 (2024). https://doi.org/10.1007/s12034-023-03068-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03068-1

Keywords

Navigation