Skip to main content
Log in

Additive manufacturing and numerical modeling of injection mold for fabricating NdFeB magnets

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This work presents the fabrication of NdFeB-based magnets using a novel method that combines powder injection and 3D printing techniques. Using customized 3D-printed plastic molds, we are able to efficiently manufacture magnets with various shapes. The injected green parts maintained near-net shape geometry. A computational model was developed to validate the design of the injection mold. The volume fraction of fluid (VOF) approach in the computational model was used to understand the flow of slurry inside the mold cavity. The computational results were promising and showed a continuous flow of slurry without any air pockets. A thorough debinding of injected green parts made sure that no binder was left behind. The microstructure and properties of the injected green parts as well as the debinded parts were investigated. The proposed method would help reduce the production cost incurred in the design and manufacturing of magnets and would also increase productivity. The magnets produced from this research could serve multiple applications in the medical, electrical, automotive and aerospace industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Fraden J 2010 Handbook of modern sensors (New York: Springer)

    Book  Google Scholar 

  2. Sagawa M, Fujimura S, Togawa N, Yamamoto H and Matsuura Y 1984 J. Appl. Phys. 55 2083

    Article  CAS  Google Scholar 

  3. Croat J J, Herbst J F, Lee R W and Pinkerton F E 1984 J. Appl. Phys. 55 2078

    Article  CAS  Google Scholar 

  4. Ma B, Herchenroeder J, Smith B, Suda M, Brown D and Chen Z 2002 J. Magn. Magn. Mater. 239 418

    Article  CAS  Google Scholar 

  5. Ormerod J and Constantinides S 1997 J. Appl. Phys. 81 4816

    Article  CAS  Google Scholar 

  6. Zhang X, Xiong W, Li Y and Song N 2009 Mater. Des. 30 1386

    Article  CAS  Google Scholar 

  7. Ma B, Sun A, Lu Z, Cheng C and Xu C 2016 J. Magn. Magn. Mater. 401 802

    Article  CAS  Google Scholar 

  8. Coey J 2011 IEEE Trans. Magn. 47 4671

    Article  CAS  Google Scholar 

  9. Wong K V and Hernandez A 2012 Int. Sch. Res. Notices 2012

  10. Khorasani M, Ghasemi A, Rolfe B and Gibson I 2022 Rapid Prototyp. J. 28 87

    Article  Google Scholar 

  11. Gang F, Ma C, Guo C, Shi R and Xiao Y 2022 Mater. Lett. 323 132542

    Article  CAS  Google Scholar 

  12. Mussi E, Servi M, Facchini F and Furferi, and Volpe Y, 2022 Rapid Prototyp. J. 29 19

    Article  Google Scholar 

  13. Divakaran N, Das J P, Pv A K, Mohanty S, Ramadoss A and Nayak S K 2022 J. Manuf. Syst. 62 477

    Article  Google Scholar 

  14. Chan S S L, Pennings R M, Edwards L and Franks G V 2020 Addit. Manuf. 35 101335

    Google Scholar 

  15. Tosello G and Costa F 2019 J. Manuf. Process. 48 236

    Article  Google Scholar 

  16. Kuo C C, Nguyen T D, Zhu Y J and Lin S X 2021 Micromachines 12 311

    Article  Google Scholar 

  17. Ansys Fluent 12.0 theory guide-16.5.3 conservation equations. Available: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node322.htm (accessed on 15 February 2023)

  18. Kan M, Ipek O and Koru M 2023 Int. J. Metalcast. 17 430

    Article  Google Scholar 

  19. Abolhasani H and Muhamad N 2010 J. Mater. Process. Technol. 210 961

    Article  CAS  Google Scholar 

  20. Moballegh L, Morshedian J and Esfandeh M 2005 Mater. Lett. 59 2832

    Article  CAS  Google Scholar 

  21. Lin K H 2011 Mater. Des. 32 1273

    Article  CAS  Google Scholar 

  22. Hausnerova B, Mukund B N and Sanetrnik D 2017 Powder Technol. 312 152

    Article  CAS  Google Scholar 

  23. Enneti R, Onbattuvelli V, Gulsoy O, Kate K and Atre S In: Handbook of metal injection molding D Heaney (ed) (New York: Elsevier) p 57

  24. Setasuwon P, Bunchavimonchet A and Danchaivijit S 2008 J. Mater. Process. Technol. 196 94

    Article  CAS  Google Scholar 

  25. Kan M, Ipek O and Koru M 2023 Int. J. Met. 17 430

    Google Scholar 

  26. Zhou H, Yan B and Zhang Y 2008 J. Mater. Process. Technol. 204 475

    Article  CAS  Google Scholar 

  27. Guerrier P, Tosello G and Hattel J H 2017 CIRP J. Manuf. Sci. Technol. 16 12

    Article  Google Scholar 

  28. Cheng J, Wan L, Cai Y, Zhu J, Song P and Dong J 2010 J. Mater. Process. Technol. 210 137

    Article  CAS  Google Scholar 

  29. Zhao M, Qiao L, Zheng J, Ying Y, Yu J, Li W et al 2019 Ceram. Int. 45 3894

    Article  CAS  Google Scholar 

  30. Rei M, Milke E, Gomes R, Schaeffer L and Souza J 2002 Mater. Lett. 52 360

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1A4A1052059), and a Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Korean Ministry of Trade, Industry and Energy (No. 20009895), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dube, T.C., Kim, BG., Jung, YG. et al. Additive manufacturing and numerical modeling of injection mold for fabricating NdFeB magnets. Bull Mater Sci 46, 213 (2023). https://doi.org/10.1007/s12034-023-03047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03047-6

Keywords

Navigation