Skip to main content
Log in

Effect of calcination temperature on structural and electrical properties of K0.5Bi0.5TiO3 ceramics prepared by solid-state route

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The parameters affecting the structural and physical properties of the material depends upon its method of preparation. The solid-state synthesis is a widely used commercial method due to its environmental stability, low-cost and large-scale production. This article describes the preparation of lead-free potassium bismuth titanate (KBT) ceramics by the conventional solid-state route. The effect of calcination temperature on the structural and electrical properties of KBT ceramics is studied systematically. The crystal structure and phase confirmation are analysed by using the X-ray diffraction technique. Raman spectroscopy analysis suggests that KBT ceramic has a better crystalline and perovskite structure. Dielectric study shows the diffusive phase transition behaviour of the material revealing its usage for high-temperature applications. Ferroelectric behaviour is confirmed by P–E loop tracer curve at different electric fields. The leakage current density decreases with the rise in calcination temperature and reveals linear ohmic conduction mechanism at higher electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Sharma A, Kumar R, Vaish R and Chauhan V S 2014 J. Int. Mater. Syst. Struct. 25 1596

    Article  CAS  Google Scholar 

  2. Yang S M and Chiu J W 1993 Compos. Struct. 25 381

    Article  Google Scholar 

  3. Kumar S, Shandilya M and Thakur N 2021 Ferroelectr. Lett. Sect. 48 128

    Article  CAS  Google Scholar 

  4. Hwang G T, Park H and Lee J H 2014 Adv. Mater. 26 4880

    Article  CAS  Google Scholar 

  5. Ponnamma D, Cabibihan J J and Rajan M 2019 Mater. Sci. Eng. C Mater. Biol. Appl. 98 1210

    Article  CAS  Google Scholar 

  6. Qi Y, Kim J and Nguyen T D 2011 Nano Lett. 11 1331

    Article  CAS  Google Scholar 

  7. Ibn-Mohammed T, Koh S C L, Reaney I M, Sinclair D C, Mustapha K B, Acquaye A et al 2017 MRS Commun. 7 1

    Article  CAS  Google Scholar 

  8. Panda P K 2009 J. Mater. Sci. 44 5049

    Article  CAS  Google Scholar 

  9. Maeder M D, Damjanovic D and Setter N 2004 J. Electroceram. 131 385

    Article  Google Scholar 

  10. Quan N D, Bac L H, Van Thiet D, Hung V N and Dung D D 2014 Adv. Mater. Sci. Eng. 1 365391

    Google Scholar 

  11. Isupov V A 2005 Ferroelectrics 315 123

    Article  CAS  Google Scholar 

  12. Otoničar M, Škapin S D, Spreitzer M and Suvorov D 2010 J. Eur. Ceram. Soc. 30 971

    Article  Google Scholar 

  13. Hiruma Y, Yoshii K, Nagata H and Takenaka T 2008 J. Appl. Phys. 103 084121

    Article  Google Scholar 

  14. Yang J, Hou Y, Wang C, Zhu M, Yan H, Yang J et al 2014 J. Appl. Phys. 121 023118

    Google Scholar 

  15. Suchanicz J, Kania A, Czaja P, Budziak A and Niewiadomski A 2018 J. Eur. Ceram. Soc. 38 567

    Article  CAS  Google Scholar 

  16. Wang P, Li Y and Lu Y 2011 J. Eur. Ceram. Soc. 31 2005

    Article  CAS  Google Scholar 

  17. Pandirengan T, Arumugam M, Durairaj M, Suresh B and Anand M A 2016 Int. J. Mater. Res. 107 484

    Article  Google Scholar 

  18. Verma M, Tanwar A, Haridas D, Mahajan S, Menon R, Kumar S et al 2022 Appl. Phys. A Mater. Sci. Process 128 1

    Article  Google Scholar 

  19. Sharma S, Sharma H, Kumar, Thakur S, Kotnala R K and Negi N S 2020 J. Mater. Sci. Mater. Electron. 31 19168

    Article  Google Scholar 

  20. Czaja P, Suchanicz J and Bochenek D 2018 Phase Transit. 91 1051

    Article  CAS  Google Scholar 

  21. Yang J, Hou Y and Wang C 2007 Appl. Phys. Lett. 91 023118

    Article  Google Scholar 

  22. Rao P V B, Ramana E V and Sankaram T B 2009 J. Alloys Compd. 467 293

    Article  CAS  Google Scholar 

  23. Zhu M, Hou L and Hou Y 2006 Mater. Chem. Phys. 99 329

    Article  CAS  Google Scholar 

  24. Mustapha S, Ndamitso M M and Abdulkareem A S 2019 Adv. Nat. Sci. Nanosci. Nanotechnol. 10 045013

    Article  Google Scholar 

  25. Monshi A, Foroughi M R and Monshi M R 2012 World J. Nano Sci. Eng. 2 154

    Article  Google Scholar 

  26. Nath D, Singh F and Das R 2020 Mater. Chem. Phys. 239 122021

    Article  CAS  Google Scholar 

  27. Turki O, Slimani A, Sassi Z, Khemakhem H, Abdelmoula N and Lebrun L 2022 J. Electron. Mater. 128 1

    Google Scholar 

  28. Motevalizadeh L, Heidary Z and Abrishami M E 2014 Bull. Mater. Sci. 37 397

    Article  CAS  Google Scholar 

  29. Kumar S and Thakur N 2019 J. Elect. Mater. 48 620348

    Google Scholar 

  30. Bartel C J, Sutton C, Goldsmith B R, Ouyang R, Musgrave C B, Ghiringhelli L M et al 2019 Sci. Adv. 5 1

    Article  Google Scholar 

  31. Guo J, Zhu M, Li L, Zheng M and Hou Y 2017 J. Alloys Compd. 703 448

    Article  CAS  Google Scholar 

  32. Lian H, Cheng R, Qiu Y, Shi J and Chen X 2020 J. Mater. Sci. Mater. Electron. 31 7927

    Article  CAS  Google Scholar 

  33. König J and Suvorov D 2015 J. Eur. Ceram. Soc. 35 2791

    Article  Google Scholar 

  34. Hanani Z, Mezzane D, Amjoud M and Fourcade S 2019 Superlattices Microstruct. 127 109

    Article  CAS  Google Scholar 

  35. Kumar S, Shandilya M and Thakur N 2019 J. Sol-Gel Technol. 92 215

    Article  CAS  Google Scholar 

  36. Swain S, Chandrasekhar M, Kumar P and Prakash C 2017 Ferroelectrics 516 185

    Article  CAS  Google Scholar 

  37. Sun B, Xiao M, Zhou G, Ren Z, Zhou Y N and Wu Y A 2020 Mater. Today Adv. 6 100056

    Article  Google Scholar 

  38. Liu, Xiong W, Liu Y, Chen K, Xu Z, Zhou Y et al 2020 Adv. Electron. Mater. 6 1

    Google Scholar 

  39. Yang R, Qin Y, Dai L and Wang Z L 2009 Nat. Nanotechnol. 4 34

    Article  CAS  Google Scholar 

  40. Abazari M and Safari A 2010 Appl. Phys. Lett. 97 262902

    Article  Google Scholar 

  41. Chiu F-C 2014 Adv. Mater. Sci. Eng. 2014 578168

    Google Scholar 

  42. Simmons J G 1967 Phys. Rev. 155 657

    Article  CAS  Google Scholar 

  43. Korotkov A S and Atuchin V V 2008 Opt. Commun. 281 2132

    Article  CAS  Google Scholar 

  44. Turki O, Slimani A, Sassi Z, Khemakhem H, Abdelmoula N and Lebrun L 2022 Appl. Phys. A 128 186

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Saloni Bhardwaj is thankful to JOINT CSIR-UGC NET-JRF, fellowship F.No.16-6(Dec.2017)/2018(NET/CSIR), for financial assistance and Sophisticated Analytical Instrumentation Facility (SAIF)-Punjab University for recording structural characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shammi Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, S., Kumar, S. & Thakur, N. Effect of calcination temperature on structural and electrical properties of K0.5Bi0.5TiO3 ceramics prepared by solid-state route. Bull Mater Sci 46, 170 (2023). https://doi.org/10.1007/s12034-023-03014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03014-1

Keywords

Navigation