Skip to main content
Log in

Tunable blue–green emission properties of Tb3+ doped barium tantalate phosphor

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The TTB (tetragonal tungsten bronze) crystal structure with the general formula of A4B2C4M10O30 has three tunnels (A, B, C) of different coordination numbers with a corner-shared octahedral formation. Thanks to these properties, the TTB structure enables various RE ion substitutions and different physical properties to emerge. A series of green-emitting Tb3+ doped barium tantalate phosphors with TTB-type structure between 0.25 and 5 mol% obtained by the solid-state reaction route is reported. The structure of Tb3+ doped TTB–BaTa2O6 was identified by XRD and SEM-EDS analyses. PL relative emission intensity increased from 0.25 to 0.5 mol% and then decreased due to concentration quenching. Depending on the increasing concentration, the colour of the luminescence of BaTa2O6:Tb3+ phosphor can be tuned from blue to green through a cross-relaxation process, where a dipole–dipole energy transfer occurs between two nearby Tb3+ ions. The PL emission of the BaTa2O6:Tb3+ in the CIE diagram tended towards blue to green with the increase in Tb3+ concentration. PL decay profiles of the 5D3 and 5D4 states have a double exponential. The observed lifetimes of the 5D3 state decrease as the decay profiles of the 5D4 state exhibit a stable tendency. Based on the cross-relaxation process, the quantum efficiency (ηQE) of the phosphor was evaluated, and the ηQE of the 5D3 state with the increase of Tb3+ concentration between 0.25 and 5 mol% varied from 61.63 to 40.85%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Bharathi N V, Kavitha P, Ramaswamy S, Jayabalakrishnan S S and Sakthipandi K 2022 Bull. Mater. Sci. 45 172

    Article  CAS  Google Scholar 

  2. Ramteke S K, Yerpude A N, Kokode N S and Dhoble S J 2021 Bull. Mater. Sci. 44 174

    Article  CAS  Google Scholar 

  3. İlhan M, Keskin İÇ and Gültekin S 2020 J. Electron. Mater. 49 2436

    Article  Google Scholar 

  4. Palan C B, Bajaj N S, Soni A and Komanwar S K 2016 Bull. Mater. Sci. 39 1157

    Article  CAS  Google Scholar 

  5. Du Z, Liu Q, Hou T, Song Y, Zhang X and Cui Y 2015 Bull. Mater. Sci. 38 805

    Article  CAS  Google Scholar 

  6. Yerpude A N and Dhoble S J 2013 Bull. Mater. Sci. 36 715

    Article  CAS  Google Scholar 

  7. Palan C B, Bajaj N S, Soni A, Kulkarni M S and Komanwar S K 2015 Bull. Mater. Sci. 39 1527

    Article  Google Scholar 

  8. Li Y C, Chang Y H, Lin Y F, Chang Y S and Lin Y 2006 J. Electrochem. Solid State 9 H74

    Article  CAS  Google Scholar 

  9. Verma R K, Kumar K and Rai S B 2010 Solid State Sci. 12 1146

    Article  CAS  Google Scholar 

  10. Bispo-Jr A G, Lima S A M, Lanfredi S, Praxedes F R and Pires A M 2019 J. Lumin. 214 116604

    Article  CAS  Google Scholar 

  11. Hao Z, Zhang J, Zhang X, Lu S and Wanga X 2009 J. Electrochem. Soc. 156 193

    Article  Google Scholar 

  12. Boruc Z, Fetlinski B, Kaczkan M, Turczynski S, Pawlak D and Malinowski M 2012 J. Alloys Compd. 532 92

    Article  CAS  Google Scholar 

  13. Liu X, Pang R, Quan Z, Yang J and Lin J 2007 J. Electrochem. Soc. 154 J185

    Article  CAS  Google Scholar 

  14. Fu Y and Hu Y 2015 Mater. Sci. Mater. Electron. 27 3867

    Article  Google Scholar 

  15. Shon K S and Shin N 2002 Electrochem. Solid State Lett. 5 H21

    Article  Google Scholar 

  16. Robbins D, Cockayne B, Lent B and Glasper J 1976 Solid State Commun. 20 673

    Article  CAS  Google Scholar 

  17. Ronda C R, Jüstel T and Nikol H 1998 J. Alloys Compd. 275–277 669

    Article  Google Scholar 

  18. Raju G S R, Pavitra E, Nagaraju G, Guan X Y and Yu J S 2015 RSC Adv. 5 22217

    Article  Google Scholar 

  19. Ratnam B, Jayasimhadri M, Kumar G B, Jang K, Kim S, Lee Y et al 2013 J. Alloys Compd. 564 100

    Article  CAS  Google Scholar 

  20. dos Santos J F M, Terra I A A, Astrath N G C, Guimarães F B, Baesso M L, Nunes L A O et al 2015 J. Appl. Phys. 117 053102

    Article  Google Scholar 

  21. Layden G K 1967 Mater. Res. Bull. 2 533

    Article  CAS  Google Scholar 

  22. Layden G K 1968 Mater. Res. Bull. 3 349

    Article  CAS  Google Scholar 

  23. İlhan M, Katı M İ, Keskin İÇ and Güleryüz L F 2022 J. Alloys Compd. 901 163626

    Article  Google Scholar 

  24. Simon A and Ravez J 2006 C. R. Chim. 9 1268

    Article  CAS  Google Scholar 

  25. Navale S C, Samuel V, Gaikwad A B and Ravi V 2007 Ceram. Int. 33 297

    Article  CAS  Google Scholar 

  26. İlhan M, Mergen A and Yaman C 2011 Ceram. Int. 37 1507

    Article  Google Scholar 

  27. İlhan M, Mergen A and Yaman C 2013 Ceram. Int. 39 5741

    Article  Google Scholar 

  28. Kato H and Kudo A 2003 Catal. Today 78 561

    Article  CAS  Google Scholar 

  29. Vanderah T A, Roth R S, Siegrist T, Febo W, Loezos J M and Wong-Ng W 2003 Solid State Sci. 5 149

    Article  CAS  Google Scholar 

  30. Zhang W, Kumada N, Takei T, Yamanaka J and Kinomura N 2005 Mater. Res. Bull. 40 1177

    Article  CAS  Google Scholar 

  31. Mumme W G, Grey I E, Roth R S and Vanderah T A 2007 J. Solid State Chem. 180 2429

    Article  CAS  Google Scholar 

  32. Lee Y H, Kim Y S, Kim D H and Oh M H 2000 IEEE Trans. Electron Devices 47 71

    Article  CAS  Google Scholar 

  33. Kato H and Kudo A 1998 Phys. Lett. 295 487

    CAS  Google Scholar 

  34. İlhan M, Mergen A, Sarıoğlu C and Yaman C 2017 J. Therm. Anal. Calorim. 128 707

    Article  Google Scholar 

  35. Ekmekçi M K, İlhan M, Güleryüz L F and Mergen A 2017 Optik 128 26

    Article  Google Scholar 

  36. İlhan M 2014 Solid State Sci. 38 160

    Article  Google Scholar 

  37. Ekmekçi M K, İlhan M, Başak A S and Deniz S 2015 J. Fluoresc. 25 1757

    Article  Google Scholar 

  38. İlhan M, Samur R, Demirer H and Mindivan F 2015 Metabk 54 407

    Google Scholar 

  39. İlhan M, Ekmekçi M K, Mergen A and Yaman C 2016 J. Fluoresc. 26 1671

    Article  Google Scholar 

  40. İlhan M, Ekmekçi M K, Mergen A and Yaman C 2017 J. Appl. Ceram. Technol. 14 1134

    Article  Google Scholar 

  41. İlhan M, Keskin İÇ, Çatalgöl Z and Samur R 2018 J. Appl. Ceram. Technol. 15 1594

    Article  Google Scholar 

  42. İlhan M 2017 AKU J. Sci. Eng. 17 675

    Article  Google Scholar 

  43. İlhan M and Güleryüz L F 2022 Chem. Pap. 76 6963

    Article  Google Scholar 

  44. İlhan M, Keskin İÇ, Güleryüz L F and Katı M İ 2022 Mater. Sci. Mater. Electron. 33 16606

    Article  Google Scholar 

  45. Nugent L J, Baybarz R D, Burnett J L and Ryan J L 1973 J. Phys. Chem. 77 1528

    Article  CAS  Google Scholar 

  46. Blasse G 1986 Solid State Chem. 62 207

    Article  CAS  Google Scholar 

  47. Blasse G 1969 Philips Res. Rep. 24 131

    CAS  Google Scholar 

  48. Van Uitert L G 1967 J. Electrochem. Soc. 114 1048

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mete Kaan Ekmekçİ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekmekçİ, M.K. Tunable blue–green emission properties of Tb3+ doped barium tantalate phosphor. Bull Mater Sci 46, 155 (2023). https://doi.org/10.1007/s12034-023-02993-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02993-5

Keywords

Navigation