Skip to main content
Log in

Effect of annealing temperature on the properties of electrodeposited Cu2O on FTO glass substrate

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study aimed to investigate the formation of Cu2O thin films on fluorine-doped tin oxide glass substrate by electrochemical deposition. The obtained Cu2O thin films were annealed in air at various temperatures from 300 to 500°C. X-ray diffraction analysis shows that as-deposited and annealed thin films at 300°C have a cubic structure with a Cu2O composition. The Cu2O films annealed at 400 and 500°C were completely converted onto the monoclinic structure with CuO composition. On the other hand, atomic force microscope and scanning electron microscope images showed that the shape of Cu2O grains was changed significantly from cubic to grains upon annealing. Mott–Schottky and photoelectrochemical measurements indicate that Cu2O thin films exhibit p-type conductivity before and after annealing. Photoluminescence measurements indicated two peaks at around 523 and 355 nm, which confirmed the existence of Cu2O and CuO thin films, respectively. Finally, the CuO nanostructures obtained at 500°C exhibited a high photocurrent enhancement and stability compared to as-deposited sample. As a consequence, the optical bandgap was reduced from 2.41 to 1.75 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Dharmadhikari D V, Phirange A S, Sabharwal S G and Athawale A A 2018 Bull. Mater. Sci. 41 4

    Article  Google Scholar 

  2. Sachdeva S, Agarwal R and Agarwal A 2018 Bull. Mater. Sci. 41 4

    Article  Google Scholar 

  3. Figueiredo V, Elangovan E, Gonçalves G, Barquinha P, Pereira L, Franco N et al 2008 Appl. Surf. Sci. 254 13

    Article  Google Scholar 

  4. Murali D S and Aryasomayajula S 2018 Appl. Phys. A 124 3

    Article  Google Scholar 

  5. Mangal R K and Vijay Y K 2007 Bull. Mater. Sci. 30 2

    Google Scholar 

  6. Genc M, Inci B, Genc Z K and Canbay C A 2015 Bull. Mater. Sci. 38 2

    Article  Google Scholar 

  7. Yang Y, Xu D, Wu Q and Diao P 2016 Sci. Rep. 6 1

    Article  Google Scholar 

  8. Verma K K, Tiwari R S and Srivastava O N 2005 Bull. Mater. Sci. 28 2

    Article  Google Scholar 

  9. Zarrinkhameh M, Zendehnam A, Hosseini S M, Robatmili N and Arabzadegan M 2014 Bull. Mater. Sci. 37 3

    Article  Google Scholar 

  10. Sahu K, Pandey A and Mohapatra S 2020 Appl. Phys. A 126 11

    Article  Google Scholar 

  11. Singhal S, Chawla A K, Gupta H O and Chandra R 2018 Bull. Mater. Sci. 41 6

    Article  Google Scholar 

  12. Laidoudi S, Bioud A Y, Azizi A, Schmerber G, Bartringer J, Barre S et al 2013 Semicond. Sci. Technol. 28 11

    Article  Google Scholar 

  13. De Jongh P E, Vanmaekelbergh D and Kelly J J 1999 Chem. Mater. 11 12

    Article  Google Scholar 

  14. Kasem K K and Davis C 2008 Bull. Mater. Sci. 31 7

    Article  Google Scholar 

  15. Wang Y, Lany S, Ghanbaja J, Fagot-Revurat Y, Chen Y P, Soldera F et al 2016 Phys. Rev. B 94 24

    Google Scholar 

  16. Debbichi L, Marco De Lucas M C, Pierson J F and Krüger P 2012 J. Phys. Chem. C 116 18

    Article  Google Scholar 

  17. Lim Y F, Chua C S, Lee C J J and Chi D 2014 Phys. Chem. Chem. Phys. 16 47

    Google Scholar 

  18. Al-Kuhaili M F 2008 Vacuum 82 6

    Article  Google Scholar 

  19. Division M S 1997 Bull. Mater. Sci. 20 3

    Google Scholar 

  20. Moumen A, Hartiti B, Thevenin P and Siadat M 2017 Opt. Quant. Electron. 49 2

    Article  Google Scholar 

  21. Prabu R D, Valanarasu S, Kulandaisamy I, Ganesh V, Shkir M and Kathalingam A 2017 J. Mater. Sci. Mater. Electron. 28 9

    Article  Google Scholar 

  22. Nayan N, Sahdan M Z, Wei L J, Ahmad M K, Lias J, Shakaff A Y M et al 2016 Procedia Chem. 20 124

    Article  CAS  Google Scholar 

  23. Lanka S and Lanka S 2005 Bull. Mater. Sci. 28 5

    Google Scholar 

  24. Pandey S K, Pandey S K, Awasthi V, Kumar A, Deshpande U P, Gupta M et al 2014 Bull. Mater. Sci. 37 5

    Article  Google Scholar 

  25. Eisermann S, Kronenberger A, Laufer A, Bieber J, Haas G, Lautenschläger S et al 2012 Phys. Status Solidi Appl. Mater. Sci. 209 3

    Article  Google Scholar 

  26. Zhang S, Wei C, Chu H and Zheng F 2020 Bull. Mater. Sci. 43 1

    Article  Google Scholar 

  27. Hu F, Chan K C and Yue T M 2009 Thin Solid Films 518 1

    Article  Google Scholar 

  28. Bouderbala I Y, Herbadji A, Mentar L, Beniaiche A and Azizi A 2018 J. Electron. Mater. 47 3

    Article  Google Scholar 

  29. Liang R M, Chang Y M, Wu P W and Lin P 2010 Thin Solid Films 518 24

    Article  Google Scholar 

  30. Baka O, Mentar L, Khelladi M R and Azizi A 2015 J. Korean Phys. Soc. 67 12

    Article  Google Scholar 

  31. Thanikaikarasan S, Perumal R, Sankaranarayanan K and Mahalingam T 2018 J. Mater. Sci. Mater. Electron. 29 18

    Article  Google Scholar 

  32. Holzschuh H and Suhr H 1990 Appl. Phys. A 51 6

    Article  Google Scholar 

  33. Johan M R, Suan M S M, Hawari N L and Ching H A 2011 Int. J. Electrochem. Sci. 6 12

    Google Scholar 

  34. Gan Y, Wang Y, Dong X and Dong L 2014 J. Mater. Sci. Mater. Electron. 25 9

    Google Scholar 

  35. Serin N, Serin T, Horzum Ş and Çelik Y 2005 Semicond. Sci. Technol. 20 5

    Article  Google Scholar 

  36. Valladares L D L S, Salinas D H, Dominguez A B, Najarro D A, Khondaker S I, Mitrelias T et al 2012 Thin Solid Films 520 20

    Google Scholar 

  37. Chalapathi U, Uthanna S and Raja V S 2017 Bull. Mater. Sci. 40 5

    Article  Google Scholar 

  38. Jamali S, Moshaii A and Mohammadian N 2017 Phys. Status Solidi Appl. Mater. Sci. 214 12

    Google Scholar 

  39. Messaoudi O, Mansouri M, Manai L, Elgharbi S, Azhary A and Bardaoui A 2020 Phase Transit. 93 12

    Google Scholar 

  40. Zhao M, Shang F, Song Y, Wang F, Zhou Z, Lv J et al 2014 J. Mater. Sci. Mater. Electron. 25 11

    Article  Google Scholar 

  41. Laidoudi S, Khelladi M R, Lamiri L, Belgherbi O, Boudour S, Dehchar C et al 2021 Appl. Phys. A Mater. Sci. Process 127 3

    Article  Google Scholar 

  42. Haller S, Rousset J, Renou G and Lincot D 2011 EPJ Photovolt. 2 20401

    Article  CAS  Google Scholar 

  43. Joseph S and Kamath P V 2007 J. Electrochem. Soc. 154 7

    Article  Google Scholar 

  44. Shang W, Shi X, Zhang X, Ma C and Wang C 2007 Appl. Phys. A 87 1

    Article  Google Scholar 

  45. Grujicic D and Pesic B 2002 Electrochim. Acta 47 18

    Article  Google Scholar 

  46. Saroukhani Z, Tahmasebi N and Mahdavi S M 2015 Bull. Mater. Sci. 38 6

    Article  Google Scholar 

  47. Wang Z, Zhang L, Schülli T U, Bai Y, Monny S A, Du A et al 2019 Angew. Chem. Int. Ed. 58 49

    Google Scholar 

  48. Zaidi N, Makhloufi L, Mandin P, Touazi S and Hammache H 2021 Bull. Mater. Sci. 44 4

    Article  Google Scholar 

  49. Pagare P K and Torane A P 2016 Microchim. Acta 183 11

    Article  Google Scholar 

  50. Manogowri R, Mary Mathelane R, Valanarasu S, Kulandaisamy I, Benazir Fathima A and Kathalingam A 2016 J. Mater. Sci. Mater. Electron. 27 4

    Article  Google Scholar 

  51. Arifuzzaman M, Hossen M B, Rashid M H, Ahmed M S and Islam M S 2020 Bull. Mater. Sci. 43 1

    Article  Google Scholar 

  52. Dhaouadi M 2018 Am. J. Phys. Appl. 6 2

    Google Scholar 

  53. Akgul F A, Akgul G, Yildirim N, Unalan H E and Turan R 2014 Mater. Chem. Phys. 147 3

    Article  Google Scholar 

  54. Grzesik Z and Migdalska M 2011 High Temp. Mater. Process. 30 4

    Article  Google Scholar 

  55. Mohamed S H and Al-Mokhtar K M 2018 Appl. Phys. A Mater. Sci. Process 124 7

    Article  Google Scholar 

  56. Madon R H, Khairul M, Sarwani I and Fawzi M 2016 ARPN J. Eng. Appl. Sci. 11 8

    Google Scholar 

  57. Castro-Rodríguez R, Oliva A I, Sosa V, Caballero-Briones F and Peña J L 2000 Appl. Surf. Sci. 161 3

    Article  Google Scholar 

  58. Kim D, Lee H, Bae J, Jeong H, Choi B, Nam T et al 2018 J. Nanosci. Nanotechnol. 18 9

    Google Scholar 

  59. Ismail W, El-Shafai N M, El-Shaer A and Abdelfatah M 2020 Mater. Sci. Semicond. Process. 120 105335

    Article  CAS  Google Scholar 

  60. Soon A, Cui X Y, Delley B, Wei S H and Stampfl C 2009 Phys. Rev. B Condens. Matter Mater. Phys. 79 3

    Article  Google Scholar 

  61. Pratista E, Gunawan G and Widodo D S 2020 J. Kim. Sains. Dan. Apl. 23 11

    Google Scholar 

  62. Han J, Chang J, Wei R, Ning X, Li J, Li Z et al 2018 Int. J. Hydrog. Energy 43 30

    Google Scholar 

  63. Bai S, Jiang J, Zhang Q and Xiong Y 2015 Chem. Soc. Rev. 44 10

    Article  Google Scholar 

  64. Wang L C, de Tacconi N R, Chenthamarakshan C R, Rajeshwar K and Tao M 2007 Thin Solid Films 515 5

    Google Scholar 

  65. Enke C G 1974 Mater. Corros. 25 10

    Google Scholar 

  66. Jin Z, Hu Z, Yu J C and Wang J 2016 J. Mater. Chem. A 4 36

    Google Scholar 

  67. Murali D S, Kumar S, Choudhary R J, Wadikar A D, Jain M K and Subrahmanyam A 2015 AIP Adv. 5 4

    Article  Google Scholar 

  68. Santos H L S, Corradini P G, Andrade M A S and Mascaro L H 2020 J. Solid State Electrochem. 24 8. [70]Ito T and Masumi T 1997 J. Phys. Soc. Jpn. 66 7

  69. Ito T and Masumi T 1997 J. Phys. Soc. Jpn. 66 7

    Google Scholar 

  70. Yu W L, Lin Y Z, Zhu X W, Hu Z G, Han M J, Cai S S et al 2015 J. Appl. Phys. 117 4

    Google Scholar 

  71. Wang P, Zhao X, Li H, Li L, Li J, Ma G et al 2014 RSC Adv. 4 71

    Article  Google Scholar 

  72. Ansari A R, Hammad A H, Abdel-wahab M S, Shariq M and Imran M 2020 Opt. Quant. Electron. 52 10

    Article  Google Scholar 

  73. Toboonsung B and Singjai P 2011 J. Alloys Compd. 509 10

    Article  Google Scholar 

  74. Iqbal S, Javed M, Bahadur A, Qamar M A, Ahmad M, Shoaib M et al 2020 J. Mater. Sci. Mater. Electron. 31 11

    Article  Google Scholar 

  75. Shinagawa T, Onoda M, Fariza B M, Sasano J and Izaki M 2013 J. Mater. Chem. A 1 32

    Article  Google Scholar 

  76. Li J, Mei Z, Ye D, Liang H, Liu L, Liu Y et al 2013 Opt. Mater. Express 3 12

    Google Scholar 

  77. Huang C Y, Chatterjee A, Liu S B, Wu S Y and Cheng C L 2010 Appl. Surf. Sci. 256 11

    Google Scholar 

  78. Liu Y L, Liu Y C, Mu R, Yang H, Shao C L, Zhang J Y et al 2005 Semicond. Sci. Technol. 20 1

    Article  Google Scholar 

  79. Rajamanickam A T, Thirunavukkarasu P and Dhanakodi K 2015 J. Mater. Sci. Mater. Electron. 26 11

    Google Scholar 

  80. Heinemann M, Eifert B and Heiliger C 2013 Phys. Rev. B Condens. Matter Mater. Phys 87 11

    Article  Google Scholar 

  81. Zoolfakar A S, Rani R A, Morfa A J, O’Mullane A P and Kalantar-Zadeh K 2014 J. Mater. Chem. C 2 27

    Article  Google Scholar 

  82. Hojabri A, Hajakbari F, Soltanpoor N and Hedayati M S 2014 J. Theor. Appl. Phys. 8 3

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge both universities of Kasdi Merbah Ouargla and Farhat abbas Sétif 1, Algeria, for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oussama Bacha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baka, O., Bacha, O., khelladi, M.R. et al. Effect of annealing temperature on the properties of electrodeposited Cu2O on FTO glass substrate. Bull Mater Sci 46, 84 (2023). https://doi.org/10.1007/s12034-023-02915-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02915-5

Keywords

Navigation