Skip to main content
Log in

Viscoelastic and high ion conducting gum tragacanth-based gel polymer electrolytes

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Gum tragacanth (GT) based gel polymer electrolytes (GPEs)/hydrogels have been synthesized using deionized water (DW) and NaOH salt, and characterized through ionic conductivity, Fourier transform infrared (FTIR), pH, thermal and mechanical studies. Ionic conductivity decrement of liquid and GPEs was observed with the increase of temperature that contradicts pre-existing theoretical equation, i.e., σ = σo exp.(−Ea/kT) and maximum ionic conductivity of 8.75 × 10–2 S cm–1 observed for GPE containing 0.625 M NaOH salt at 30°C. Effect of temperature on pH has been investigated for different GPEs and the results were also supported by FTIR studies by formation of new and disappearance of old peaks. Thermogravimetric analysis studies involved the measurements of Tg for GPEs with the incorporation of different concentrations of NaOH salt, supported by DTG thermograms. Viscoelastic behaviour of GPEs with and without salt have been described by rheological studies at 30°C. In spite of that, time-dependent high structure recovery ratio pointed out the sol to gel transition in GPEs after the removal of applied shear rate. Due to high ion conducting, thermally and mechanically strengthened GPEs-based materials may make them applicable for their use in different device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Tan S J, Zeng X X, Ma Q, Wu X W and Guo Y G 2018 Electrochem. Energy Rev. 1 113

    Article  CAS  Google Scholar 

  2. Qiao L, Judez X, Rojo T, Armand M and Zhang H 2020 J. Electrochem. Soc. 167 070534

    Article  CAS  Google Scholar 

  3. Wu Z, Xie Z, Yoshida A, Wang Z, Hao X, Abudula A et al 2019 Renew. Sust. Energ. Rev. 109 367

    Article  CAS  Google Scholar 

  4. Hasan M M, Islam M D and Rashid T U 2020 Energy Fuels 34 15634

    Article  CAS  Google Scholar 

  5. Toigo C, Arbizzani C, Pettinger K H and Biso M 2020 Molecules 25 2443

    Article  CAS  Google Scholar 

  6. Li J T, Wu Z Y, Lu Y Q, Zhou Y, Huang Q S, Huang L et al 2017 Adv. Energy Mater. 7 1701185

    Article  Google Scholar 

  7. Singh R, Polu A R, Bhattacharya B, Rhee H W, Varlikli C and Singh P K 2016 Renew. Sust. Energ. Rev. 65 1098

    Article  CAS  Google Scholar 

  8. Chauhan G, Verma A, Hazarika A and Ojha K 2017 J. Taiwan Inst. Chem. Eng. 80 978

    Article  CAS  Google Scholar 

  9. Kaith B S, Sharma S, Jindal R K, Kumar V and Bhatti M S 2014 RCS Adv. 4 39822

    Google Scholar 

  10. Zare E N, Makvandi P and Tay F R 2019 Carbohydr. Polym. 212 450

    Article  Google Scholar 

  11. Arora N, Sharma V, Kumar R and Kumar R 2018 Emerg. Mater. Res. 7 89

    Google Scholar 

  12. Karmann W, Weidehaas G, Howe B and Piel F 1981 US 4299231A

  13. Singh H P, Kaur R and Sekhon S S 2003 Indian J. Eng. Mater. Sci. 10 314

    CAS  Google Scholar 

  14. Singh B and Sharma V 2014 Carbohydr. Polym. 101 928

    Article  CAS  Google Scholar 

  15. Gupta V K, Sood S, Agarwala S, Saini A K and Pathania D 2018 Int. J. Biol. Macromol. 107 2534

    Article  CAS  Google Scholar 

  16. Saruchi Kaith B S, Jindal R and Kapur G S 2013 Iran. Polym. J. 22 561

    Article  CAS  Google Scholar 

  17. Sharma V, Kumar R, Arora N, Singh S, Sharma N, Anand A et al 2020 J. Solid State Electrochem. 24 1337

    Article  CAS  Google Scholar 

  18. Sharma V, Arora N, Kumar R, Singh S and Verma S 2021 Polym. Bull. 15 1

    CAS  Google Scholar 

  19. Wang T and Jackson D C 2016 J. Exp. Biol. 219 1090

    Article  Google Scholar 

  20. Apoorva A, Rameshbabu A P, Dasgupta S, Dhara S and Padmavati M 2020 Int. J. Biol. Macromol. 147 675

    Article  CAS  Google Scholar 

  21. Gong J, Wang L, Wu J, Yuan Y, Mu R J, Du Y et al 2018 LWT - Food Sci. Technol. 100 271

    Article  Google Scholar 

  22. Sahraei R and Ghaemy M 2016 Carbohydr. Polym. 157 823

    Article  Google Scholar 

  23. Rahmani Z, Sahraei R and Ghaemy M 2018 Carbohydr. Polym. 194 34

    Article  CAS  Google Scholar 

  24. Khanmirzaei M H, Ramesh S and Ramesh K 2015 Ionics 21 2383

    Article  CAS  Google Scholar 

  25. Hirankumar G and Mehta N 2018 Heliyon 4 e00992

    Article  CAS  Google Scholar 

  26. Farahnaky A, Shanesazzadeh E, Mesbahi G and Majzoobi M 2013 J. Food Eng. 116 782

    Article  CAS  Google Scholar 

  27. Koocheki A, Taherian A R and Bostan A 2013 Food Res. Int. 50 446

    Article  CAS  Google Scholar 

  28. Anseth K S, Bowman C N and Peppas L B 1996 Biomater. 17 1647

    Article  CAS  Google Scholar 

  29. Ortan A, Parvu C D, Ghica M V, Popescu L M and Ionita L 2011 Rom. Biotechnol. Lett. 16 47

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Principal, D.A.V. College, Amritsar (India), for providing the research facilities. We would also like to thank Dr Vipan Kumar, Department of Chemistry, G.N.D.U. Amritsar (India), Dr Navjeet Sharma, P.G. Department of Physics, D.A.V. College, Jalandhar (India), Dr Subheet Kumar Jain, Department of Pharmaceutical Sciences, G.N.D.U. Amritsar (India) and Dr Kamaldeep Paul, T.I.E.T. Patiala (India), for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narinder Arora.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Arora, N., Kumar, R. et al. Viscoelastic and high ion conducting gum tragacanth-based gel polymer electrolytes. Bull Mater Sci 46, 50 (2023). https://doi.org/10.1007/s12034-023-02897-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02897-4

Keywords

Navigation