Skip to main content
Log in

Effects of S/EB ratio on some properties of PLA/SEBS blends

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA)/styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) blends were prepared by using two different SEBS polymers with different styrene to ethylene–butylene (S/EB) ratio. Polymer blends were prepared by high shear solution mixing and solvent-casted samples were compression moulded. PLA/SEBS blends with the ratio of 25/75, 50/50 and 75/25 were prepared and their morphological, mechanical, structural and thermal properties were evaluated. Scanning electron microscopy analysis showed that S/EB ratio was important in terms of morphology of the phase separation. While at lower S content, phase separation was mostly in the form of cylindrical channels, and at higher S ratio, copolymer dispersed in PLA in the form of random spherical particles and cylindrical channels. Although incorporation of SEBS led to decrease in tensile strength and increase in strain at break for both copolymers, higher S ratio resulted in higher strength and modulus. Thermal stability of PLA showed almost similar properties by addition of copolymers, regardless of the copolymer morphology. Fourier transform infrared spectroscopy and differential scanning calorimetry analyses showed the characteristic behaviour of the polymers. Blends did not show noticeable shift for glass transition temperature (Tg) in terms of their SEBS component. However, TgPLA shifted to lower values and double peaks that are useful for understanding the melting behaviour of the system, turned into a single peak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Saeed U, Nawaz M A and Al-Turaif H A 2018 J. Compos. Mater. 52 19

    Article  Google Scholar 

  2. Hazer S and Aytac A 2021 J. Compos. Mater. 55 8

    Article  Google Scholar 

  3. Chow W S, Leu Y Y and Ishak Z M 2014 J. Compos. Mater. 48 2

    Article  Google Scholar 

  4. Lima J C C, Araújo E A G, Agrawal P and Mélo T J A 2019 Macromol. Symp. 383 1

    Google Scholar 

  5. Hashima K, Nishitsuji S and Inoue T 2010 Polymer (Guildf) 51 17

    Article  Google Scholar 

  6. Nehra R, Maiti S N and Jacob J 2018 Polym. Adv. Technol. 29 1

    Article  Google Scholar 

  7. Lu Y, Wang C, Yu J and Lu S 2018 IOP Conf. Ser. Mater. Sci. Eng. 394 2

    Google Scholar 

  8. Sangeetha V H, Varghese T O and Nayak S K 2016 Polym. Eng. Sci. 56 6

    Article  Google Scholar 

  9. Tejada-Oliveros R, Balart R, Ivorra-Martinez J, Gomez-Caturla J, Montanes N and Quiles-Carrillo L 2021 Molecules 26 1

    Article  Google Scholar 

  10. Jiang J, Su L, Zhang K and Wu G 2013 J. Appl. Polym. Sci. 128 6

    Article  Google Scholar 

  11. Arvidson S A, Roskov K E, Patel J J, Spontak R J, Khan S A and Gorga R E 2012 Macromolecules 45 2

    Article  Google Scholar 

  12. Park D H, Kim M S, Yang J H, Lee D J, Kim K N, Hong B K et al 2011 Macromol. Res. 19 2

    Article  Google Scholar 

  13. Qi R, Luo M and Huang M 2011 J. Appl. Polym. Sci. 120 5

    Google Scholar 

  14. Tsou C H, Kao B J, Yang M C, Suen M C, Lee Y H, Chen J C et al 2015 Biomed. Mater. Eng. 26 147

    Google Scholar 

  15. Nehra R, Maiti S N and Jacob J 2018 J. Appl. Polym. Sci. 135 1

    Article  Google Scholar 

  16. Sangeetha V H, Varghese T O and Nayak S K 2019 Iran. Polym. J. (English Ed.) 28 8

    Google Scholar 

  17. Yoo T W, Yoon H G, Choi S J, Kim M S, Kim Y H and Kim W N 2010 Macromol. Res. 18 6

    Google Scholar 

  18. Arevalillo A, Muñoz M E, Calafell I, Santamaría A, Fraga L and Barrio J A 2012 Polym. Test. 31 7

    Article  Google Scholar 

  19. Cetin M S and Karahan Toprakci H A 2021 Compos. Part B Eng. 224 109199

    Article  CAS  Google Scholar 

  20. Daniel C, Hamley I W and Mortensen K 2000 Polymer (Guildf) 41 26

    Article  Google Scholar 

  21. Zhu S, So J H, Mays R, Desai S, Barnes W R, Pourdeyhimi B et al 2013 Adv. Funct. Mater. 23 18

    Google Scholar 

  22. Utracki L A and Wilkie C A 2014 (eds) Polymer blends handbook (Netherlands: Springer)

  23. Lee H W, Insyani R, Prasetyo D, Prajitno H and Sitompul J 2015 J. Eng. Technol. Sci. 47 4

    Article  Google Scholar 

  24. Muller J, González-Martínez C and Chiralt A 2017 Eur. Polym. J. 95 56

    Article  CAS  Google Scholar 

  25. Liu Y, Liang X, Wang S, Qin W and Zhang Q 2018 Polymers (Basel) 10 5

    Article  Google Scholar 

  26. Pop M A, Croitoru C, Bedő T, Geaman V, Radomir I, Coşniţa M et al 2019 J. Appl. Polym. Sci. 136 17

    Article  Google Scholar 

  27. Bolskis E, Adomavičiute E, Griškonis E and Norvydas V 2020 Materials (Basel) 13 17

    Article  Google Scholar 

  28. Harmaen A S, Khalina A, Faizal A R and Jawaid M 2013 Polym. Plast. Technol. Eng. 52 4

    Article  Google Scholar 

  29. Dong W, Wang X, Jiang Z, Tian B, Liu Y, Yang J et al 2019 Polymers (Basel) 11 6

    Google Scholar 

  30. Ganguly A, Bhowmick A K and Li Y 2008 Macromolecules 41 16

    Article  Google Scholar 

  31. Mistry M K, Choudhury N R, Dutta N K and Knott R 2010 J. Memb. Sci. 351 1

    Article  Google Scholar 

  32. Vargas M A, López N N, Cruz M J, Calderas F and Manero O 2009 Rubber Chem. Technol. 82 2

    Article  Google Scholar 

  33. Asandulesa M, George R, Topala I, Pohoata V, Dobromir M and Dumitrascu N 2013 Open Plasma Phys. J. 6 1

    Article  Google Scholar 

  34. Kim J, Keun, Kim C, Hyeon, Park M and Hwan 2016 Bull. Korean Chem. Soc. 37 6

    Google Scholar 

  35. Garcia-Garcia D, Crespo-Amorós J E, Parres F and Samper M D 2020 Polymers (Basel) 12 4

    Google Scholar 

  36. Liu S, Wu G, Chen X, Zhang X, Yu J, Liu M et al 2019 Polymers (Basel) 11 6

    Google Scholar 

  37. Bhadusha N and Ananthabaskaran T 2011 J. Chem. 8 4

    Google Scholar 

  38. Luisa L, Esteves B and Martins J M 2012 5th Int. Conf. Environ. Compat. For. Prod. (PROCEEDINGS ECOWOODV12)

  39. Cetin M S, Toprakci O, Taskin O S, Aksu A and Toprakci H A K 2022 J. Elastomers Plast. 54 1

    Article  Google Scholar 

  40. Zhang J B, Zhang H, Jin F L and Park S J 2020 Bull. Mater. Sci. 43 1

    Article  CAS  Google Scholar 

  41. Cui X, Jiang Y, Xu Z, Xi M, Jiang Y, Song P et al 2021 Compos. Part B Eng. 211 108641

    Article  CAS  Google Scholar 

  42. Costa P, Silva J, Ansón-Casaos A, Martinez M T, Abad M J, Viana J et al 2014 Compos. Part B Eng. 61 136

    Article  CAS  Google Scholar 

  43. Teamsinsungvon A, Ruksakulpiwat Y and Jarukumjorn K 2013 Polym. Plast. Technol. Eng. 52 13

    Article  Google Scholar 

  44. Zhang J, Yan D X, Xu J Z, Huang H D, Lei J and Li Z M 2012 AIP Adv. 2 4

    Google Scholar 

Download references

Acknowledgement

This project was funded by the Yalova University, BAP (Scientific Research Project) Project No: 2021/YL/0013, ‘Preparation and Characterization of Poly(lactic acid) Blends’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H A Karahan Toprakci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekiz, İ., Cetin, M.S., Toprakci, O. et al. Effects of S/EB ratio on some properties of PLA/SEBS blends. Bull Mater Sci 45, 251 (2022). https://doi.org/10.1007/s12034-022-02836-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02836-9

Keywords

Navigation