Skip to main content
Log in

Low dielectric losses and enhanced magnetic property of ErIG(x)/YIG(1−x) (x = 0.5) composite for antenna applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The composite of yttrium iron garnet (YIG) and erbium iron garnet (ErIG; i.e., ErIG(x)/YIG(1−x) (x = 0.5)) was prepared by facile mechanical blending method. X-ray diffraction study reveals the pure phase formation of YIG, ErIG and ErIG(x)/YIG(1−x). Field-emission scanning electron microscope micrographs were used to calculate grain size of the samples. Impedance analyser was used to study dielectric property of YIG, ErIG and ErIG(x)/YIG(1−x). The composite ErIG(x)/YIG(1−x) has larger values of dielectric constant and lower values of tangent losses ∼0.05 at 1 MHz. Calculated ac conductivity of ErIG(x)/YIG(1−x) composite is low, which implies its resistive nature. The value of coercivity (Hc) is lesser and value of magnetic saturation (Ms) is high for composite as compare to parent YIG and ErIG. The calculated value of microwave operating frequency (ωm) for composite was found to be 4.5 GHz. The good dielectric property, low dielectric losses and enhanced magnetic property of ErIG(x)/YIG(1−x) composite suggest a better option over parent garnet ferrites to be used in microwave devices such as dielectric antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Bhalekar A R and Singh L N 2020 J. Supercond. Nov. Magn. 33 1859

    Article  CAS  Google Scholar 

  2. Sattar A A, Elsayed H M and Faramawy A M 2016 J. Magn. Magn. Mater. 412 172

    Article  CAS  Google Scholar 

  3. Arun T, Vairavel S, Gokul Raj S and Justin J 2012 Ceram. Int. 38 2369

    Article  CAS  Google Scholar 

  4. Garskaite E, Gibson K, Leleckaite A, Glaser J, Niznansky D, Kareiva A et al 2016 J. Chem. Phys. 323 204

    Google Scholar 

  5. Yousaf M, Noor A, Xu S, Akhtar M A and Wang B 2020 Cerm. Int. 46 16524

    Article  CAS  Google Scholar 

  6. Praveena K and Srinath S 2014 J. Magn. Magn. Mater. 349 45

    Article  CAS  Google Scholar 

  7. Jia Z and Misra R D K 2011 Mater. Technol. 26 191

    Article  CAS  Google Scholar 

  8. Seongatae B, Sang Won L, Hirukawa A, Takemura Y, Youn H J, Sang G L et al 2009 IEEE Trans. Nanotechnol. 8 86

    Article  Google Scholar 

  9. Azadi Motlagh Z, Mozaffari M and Amighian J 2009 J. Magn. Magn. Mater. 321 1980

    Article  CAS  Google Scholar 

  10. Sharma A, Godara S K and Srivastava A K 2021 Mater. Proceed. Today. https://doi.org/10.1016/j.matpr.2021.09.234

    Article  Google Scholar 

  11. Mallmann E J J, Sombra A S B, Goes J C and Fechine P B A 2013 Solid State Phenom. 202 65

    Article  Google Scholar 

  12. Shi Z C, Fan R H, Wang X A, Zhang Z D, Qian L, Yin L W and Bai Y J 2015 J. Eur. Ceram. Soc. 35 1219

    Article  CAS  Google Scholar 

  13. Soleimani H, Abbas Z, Yahya N, Shameli K, Soleimani H and Shabanzadeh P 2012 Int. J. Mol. Sci. 13 8540

    Article  CAS  Google Scholar 

  14. Fechine P B A, Fontgalland G and Sombra A S B 2016 IEEE International Symposium on Antennas and Propagation (APSURSI) 1939

  15. Zheng J, Fu Q, Chen X, Chakrabarti C, Wang P, Yin H et al 2021 J. Mater. Sci. Mater. Elect. 32 290

    Article  CAS  Google Scholar 

  16. Huang C C, Hung Y H, Huang J Y and Kuo M F 2014 IEEE Trans. Magn. 50 1

    Google Scholar 

  17. Tchouank Tekou Carol T, Mohammed J, Basandrai D, Godara S K, Bhadu Gopala R, Mishra S et al 2020 J. Magn. Magn. Mater. 501 166433

    Article  CAS  Google Scholar 

  18. Mohammed J, Carol T T T, Hafeez H Y, Basandrai D, Bhadu G R, Godara S K et al 2019 Res. Phys. 13 102307

    Google Scholar 

  19. Das A, Bestha K K, Bongurala P and Gorige V 2020 Nanotechnology 31 335716

    Article  CAS  Google Scholar 

  20. Rastogi A C and Moorthy V N 2002 Mater. Sci. Eng. B 95 131

    Article  Google Scholar 

  21. Sharma A, Godara S K and Srivastava A K 2022 Ind. J. Phys.. https://doi.org/10.1007/s12648-022-02365-5

    Article  Google Scholar 

  22. Bestha K K, Abraham J J, Chelvane J A and Gorige V 2020 Phys. Scripta 95 085802

    Article  CAS  Google Scholar 

  23. Lopez-Ortega A, Estarder M, Salazar-Alvarez G, Roca A G and Nogues J 2015 Phys. Rep. 553 1

    Article  CAS  Google Scholar 

  24. Mohammed J, Hafeez H Y, Carol T T T, Ndikilar C E, Sharma J, Maji P K et al 2019 Mater. Res. Express 6 056111

    Article  CAS  Google Scholar 

  25. Mohammed J, Suleiman A B, Carol T T T, Hafeez H Y, Sharma J, Maji P K et al 2018 Chin. Phys. B 27 128104

    Article  CAS  Google Scholar 

  26. Algarou N A, Slimani Y, Almessiere M A, Rehman S, Younas M, Unal B et al 2020 J. Taiwan Inst. Chem. Eng. 113 344

    Article  CAS  Google Scholar 

  27. Shafiee F N, Mustaffa M S, Abdullah N H, Hamidon M N, Ismail I, Nazlan R et al 2021 J. Mater. Sci. Mater. in Elect. 32 10160

    Article  CAS  Google Scholar 

  28. Sharma A, Godara S K, Maji P K and Srivastava A K 2021 Crys. Res. Technol. 1 2100109

    Google Scholar 

  29. Fernandes C, Pereira C, Garcia M P F, Pereira A M, Guedes A, Pacheco R F et al 2014 J. Mater. Chem. C 2 5818

    Article  CAS  Google Scholar 

  30. Bongurala P and Gorige V 2019 J. Magn. Magn. Mater. 477 350

    Article  CAS  Google Scholar 

  31. Mansour S F, Imam N G, Goda S and Abdo M A 2020 J. Mater. Res. Tech. 9 1434

    Article  CAS  Google Scholar 

  32. Qindeel R and Alonizan N H 2019 Mater. Sci. Eng. B 244 43

    Article  CAS  Google Scholar 

  33. Lodhi M Y, Khan M A, Akhtar M N, Warsi M F, Mahmood A and Ramay S M 2018 Ceram. Intern. 44 2968

    Article  CAS  Google Scholar 

  34. Kotnala R K, Ahmad S, Ahmed A S, Shah J and Azam A 2012 J. Appl. Phys. 112 054323

    Article  Google Scholar 

  35. Musa M A, Azis R S, Dong X, Osman N H, Hassan J, Muhammad F D et al 2020 AIP Adv. 10 1

    Article  Google Scholar 

  36. Aakansha B D and Ravi S 2018 J. Supercond. Novel Magn. 31 2121

    Article  CAS  Google Scholar 

  37. Saleem M, Chouhan S and Mishra A 2019 J. Adv. Dielectrics 9 1950044

    Article  CAS  Google Scholar 

  38. Shi Z C, Fan R H, Wang X A, Zhang Z D, Qian L, Ying L W et al 2015 J. Eur. Ceram. Soc. 35 1219

    Article  CAS  Google Scholar 

  39. Kolekar Y D, Sanchez L, Rubio E J and Ramana C V 2014 Solid State Comm. 184 34

    Article  CAS  Google Scholar 

  40. Haijun Z, Zhichao L, Xi Y, Liangying Z and Mingzhong W 2003 Mater. Res. Bull. 38 363

    Article  Google Scholar 

  41. Akhtar M N, Hussain T, Khan M A and Ahmad M 2018 Res. Phys. 10 784

    Google Scholar 

  42. Anis-ur-Rehman M and Asghar G 2011 J. Alloys Compd. 509 435

    Article  CAS  Google Scholar 

  43. Dhabekar K and Kant K M 2021 Phys. B: Condens. Matter 603 412752

    Article  CAS  Google Scholar 

  44. Sadiq I, Ali I, Rebrov E V, Naseem S, Ashiq M N and Rana M U 2014 J. Mater. Eng. Perf. 23 622

    Article  CAS  Google Scholar 

  45. Ali I, Islam M U, Awan M S and Ahmad M 2013 J. Mater. Eng. Perf. 22 2673

    Article  CAS  Google Scholar 

  46. Sivakumar N, Narayanasamy A and Ponpandian N 2007 J. Appl. Phys. 101 084116

    Article  Google Scholar 

  47. Paiva D V M, Nascimento J P C D, Neto D M A, Chaves A V, Rocha J S, Cunha F A et al 2014 IAEA 13 1

    Google Scholar 

  48. Qureshi A, Ayhan M and Bekir A 2009 J. Phys. Conf. Ser. 153 012061

    Article  Google Scholar 

  49. Sharif M K, Khan M A, Hussain A, Iqbal F, Shakir I, Murtaza G et al 2016 J. Alloys Compd. 667 329

    Article  CAS  Google Scholar 

  50. Wei Y Z and Sridhar S 1993 J. Chem. Phys. 99 3119

    Article  CAS  Google Scholar 

  51. Tsangaris G M, Psarras G C and Kouloumbi N 1998 J. Mater. Sci. 33 2027

    Article  CAS  Google Scholar 

  52. Stolz U 1987 J. Phys. F: Metal Phys. 17 1833

    Article  CAS  Google Scholar 

  53. Ranjan R, Kumar R, Kumar N, Behera B and Choudhary R N P 2011 J. Alloys Compd. 509 6388

    Article  CAS  Google Scholar 

  54. Azis R S, Syazwan M N, Shahrani N M M, Hapishah A N, Nazian R, Idris F M et al 2018 J. Mater. Sci. Mater. Elect. 29 8390

    Article  CAS  Google Scholar 

  55. Almessiere M A, Unal B, Demir Korkmaz A, Sagar E S, Baykal A, Slimani Y et al 2021 J. Mater. Res. Tech. 15 969

    Article  CAS  Google Scholar 

  56. Jung H K, Kim C H, Hong A R, Lee S H, Kim T C, Jang H S et al 2019 Cerm. Intern. 45 9846

    Article  CAS  Google Scholar 

  57. Lin Q, He Y, Xu J, Lin J, Guo Z and Yang F 2018 Nanomaterials 8 750

    Article  Google Scholar 

  58. Kumar L and Kar M 2011 J. Magn. Magn. Mater. 323 2042

    Article  CAS  Google Scholar 

  59. Khan R A, Mizukami S, Khan A M, Ismail B, Khan A R and Miyazaki T 2015 J. Alloys Compd. 637 197

    Article  CAS  Google Scholar 

  60. Manglam M K, Mallick J, Kumari S, Pandey R and Kar M 2021 Solid State Sci. 113 106529

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajeet Kumar Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Mohammed, I., Godara, S.K. et al. Low dielectric losses and enhanced magnetic property of ErIG(x)/YIG(1−x) (x = 0.5) composite for antenna applications. Bull Mater Sci 45, 248 (2022). https://doi.org/10.1007/s12034-022-02810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02810-5

Keywords

Navigation