Skip to main content

Advertisement

Log in

High-pressure studies on pristine and Pb-substituted Bi-based high-temperature superconductor

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Transport measurements were performed on over-doped samples of pristine and Pb-substituted Bi–Sr–Ca–Cu–O as a function of applied pressure up to 7 GPa. A monotonic decrease in the superconducting transition temperature accompanied by a change in the normal-state behaviour from metallic to semiconducting as a function of pressure is observed in the pristine sample. In the Pb-substituted sample, a monotonic decrease in the superconducting transition temperature up to ~4.5 GPa followed by an increase after attaining a valley is observed. The pressure required to achieve this increase in TC in the Pb-substituted Bi–Sr–Ca–Cu–O was found to be much lower than that reported in the literature. High-pressure X-ray diffraction measurements performed on these samples reveal the absence of any structural phase transition. Furthermore, the values of the bulk moduli are found to increase in the Pb-substituted sample. The density functional theory calculations used to substantiate the obtained results indicate a pressure-induced buckling of the Cu–O plane in the Bi-2212 phase of the pristine sample. In the Pb-substituted sample, an increase in the number of electronic states available for conduction at the Fermi level and a pressure-dependent increase in the contribution of Pb towards the density of states are revealed from the calculations of the density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Maeda H, Tanaka Y, Fukutomi M and Asano T 1988 Jpn. J. Appl. Phys. 27 L209

    Article  CAS  Google Scholar 

  2. Lim C S, Wang L, Chua C K, Sofer Z, Jankovský O and Pumera M 2015 J. Mater. Chem. A 3 8346

    Article  CAS  Google Scholar 

  3. Akhtar Z-N, Akhtar M J and Catlow C R A 1994 J. Mater. Chem. 4 1081

    Article  CAS  Google Scholar 

  4. Shamray V F, Mikhailova A B and Mitin A V 2009 Crystallogr. Rep. 54 584

    Article  CAS  Google Scholar 

  5. Zeljkovic I and Hoffman J E 2013 Phys. Chem. Chem. Phys. 15 13462

    Article  CAS  Google Scholar 

  6. Ren J K, Zhu X B, Yu H F, Tian Y, Yang H F, Gu C Z et al 2012 Sci. Rep. 2 248

  7. Kleiner R and Müller P 1994 Phys. Rev. B 49 1327

    Article  CAS  Google Scholar 

  8. Gayathri V, Sathyanarayana A T, Amaladass E P, Vinod K, Geetha Kumary T, Pandian R et al 2021 Indian J. Pure Appl. Phys. 59 391

    Google Scholar 

  9. Gayathri V, Bera S, Amaladass E P, Kumary T G, Pandian R and Mani A 2021 Phys. Chem. Chem. Phys. 23 12822

    Article  Google Scholar 

  10. Chen X J, Struzhkin V V, Yu Y, Goncharov A F, Lin C T, Mao H K et al 2010 Nature 466 950

    Article  CAS  Google Scholar 

  11. Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296

    Article  CAS  Google Scholar 

  12. Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L et al 1987 Phys. Rev. Lett. 58 908

    Article  CAS  Google Scholar 

  13. Zhi-An R, Wei L, Jie Y, Wei Y, Xiao-Li S et al 2008 Chin. Phys. Lett. 25 2215

    Article  Google Scholar 

  14. Deng L, Zheng Y, Wu Z, Huyan S, Wu H-C, Nie Y et al 2004 Proc. Natl. Acad. Sci. 116 2004

  15. Adachi S, Matsumoto R, Hara H, Saito Y, Song P, Takeya H et al 2019 Appl. Phys. Express 12 043002

  16. Radaelli P G, Wagner J L, Hunter B A, Beno M A, Knapp G S, Jorgensen J D et al 1993 Phys. C Supercond. 216 29

    Article  CAS  Google Scholar 

  17. Welp U, Crabtree G W, Wagner J L, Hinks D G, Radaelli P G, Jorgensen J D et al 1993 Appl. Phys. Lett. 63 693

    Article  CAS  Google Scholar 

  18. Kvam E W 1997 J. Supercond. 10 33

    Article  CAS  Google Scholar 

  19. Jorgensen J D, Hinks D G, Chmaissem O, Argyriou D N, Mitchell J F and Dabrowski B 1996 Recent developments in high temperature superconductivity ed J Klamut, B W Veal, B M Dabrowski and P W Klamut (Berlin, Heidelberg: Springer) p 1

  20. Awadhesh Mani, Bharathi A, Sastry V S, Hariharan Y and Radhakrishnan T S 2000 Eighteenth International Cryogenic Engineering Conference, New Delhi, India p 615

  21. Hafner J 2008 J. Comput. Chem. 29 2044

    Article  CAS  Google Scholar 

  22. Blöchl P E 1994 Phys. Rev. B 50 17953

    Article  Google Scholar 

  23. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  24. Zhou Y, Guo J, Cai S, Zhao J, Gu G and Lin C 2022 Nat. Phys. 18 406

    Article  CAS  Google Scholar 

  25. Anderson O L and Anderson O L 1995 Equations of state of solids for geophysics and ceramic science (Oxford University Press, New York), p 405

    Google Scholar 

  26. Sarun P M, Shabna R, Vinu S, Biju A and Syamaprasad U 2009 Phys. B Condens. Matter. 404 1602

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Gayathri is grateful to the Department of Atomic Energy, Government of India, for the funding provided for her research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Gayathri.

Additional information

This article is part of the Special issue on ‘High pressure materials science: recent trends’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayathri, V., Sathyanarayana, A.T., Shukla, B. et al. High-pressure studies on pristine and Pb-substituted Bi-based high-temperature superconductor. Bull Mater Sci 45, 207 (2022). https://doi.org/10.1007/s12034-022-02797-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02797-z

Keywords

Navigation