Skip to main content
Log in

Upconversion luminescence and temperature sensing properties of Er3+/Yb3+/Gd3+ co-doped YNbO4 phosphors

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Owing to the great role and application potential of upconversion luminescent materials in the field of temperature sensing, it is very essential to develop new rare-earth materials with excellent upconversion luminescence (UCL) and temperature sensing properties. In this study, an Er3+/Yb3+/Gd3+ co-doped YNbO4 as a UCL material was synthesized. In this system, Er is used as the luminescence centre; Yb is used as the sensitizer, and Gd can effectively adjust the crystal field of the matrix material and improve the UCL performance. In addition, the composition and intrinsic luminescence mechanism of the materials are studied in detail. It can be seen that the UCL intensity was strengthened for Er3+/Yb3+/Gd3+ co-doped YNbO4 compared to Er3+/Yb3+ co-doped YNbO4. The results show that Gd3+ can effectively improve the UCL intensity of Er3+/Yb3+-doped YNbO4 samples. Using fluorescence intensity ratio technology, we obtained the temperature sensing performance of the material, which has the highest sensitivity at 493 K (0.0033 K−1). This suggests that the material has great application potential in the fields of UCL and temperature sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Denghao L, Weirong W, Xiaofeng L, Chun J and Jian R Q 2019 J. Mater. Chem. C 7 4336

    Article  Google Scholar 

  2. Chaohao C, Fan W, Shihui W, Qian P S, Mike C L W, Yongtao L et al 2018 Nat. Commun. 9 3290

    Article  Google Scholar 

  3. Xingxing Y, Zuoling F, Yanmin Y, Chunpeng Z, Zhijian W, Tianqi S et al 2015 J. Am. Ceram. Soc. 98 2595

    Article  Google Scholar 

  4. Akhilesh Kumar S, Sanjay Kumar S, Bipin Kumar G, Rajiv P and Shyam B R 2013 Dalton Trans. 42 1065

    Article  Google Scholar 

  5. Hao S, Qi Z, Xin Z, Bing C, Jiangkun C and Feng W 2021 Mater. Today Phys. 21 100520

    Article  Google Scholar 

  6. Xiaonai C, Jun L, Xusheng W, Yanxia L and Xi Y 2017 RSC Adv. 7 40046

    Article  Google Scholar 

  7. Tao P, Yanyan W, Yujian Z, Ronghua J, Junwen M, Hong W et al 2022 J. Mater. Chem. C 10 5109

    Article  Google Scholar 

  8. Tao P, Junwen M, Ronghua J and Hai G 2022 J. Lumin. 248 118980

    Article  Google Scholar 

  9. Meimei X, Wanyin G, Ye T, Yuanting W and Yongxiang L 2021 J. Mater. Sci. 56 9302

    Article  Google Scholar 

  10. Yeqing C, Hyunkyun Y, Sungwook P, Byungkee M, Byunchun C, Junhyun J et al 2012 J. Alloys Compd. 511 123

    Article  Google Scholar 

  11. Peng D, Quan Z, Xinying W, Laihui L and Weiping L 2019 J. Alloys Compd. 805 171

    Article  Google Scholar 

  12. Shanshan D, Deyin W, Qinping Q, Xinlong M, Zuobin T and Yuhua W 2016 J. Mater. Chem C 4 7148

    Article  Google Scholar 

  13. Akanksha M, Ramesh S Y, Ran V Y, Shyam B R and Amresh B 2016 Rsc Adv. 6 113469

    Article  Google Scholar 

  14. Akanksha M, Abhishek D, Amresh B and Shyam B R 2019 J. Alloys Compd. 786 457

    Article  Google Scholar 

  15. Fiorenzo V, Rafik N, Alicia Z, Angeles J F, Francisco S-R, Laura M M et al 2010 ACS Nano 4 3254

    Article  Google Scholar 

  16. Hideo K, Ojars J S and Taisuke Y 1976 Jpn. J. Appl. Phys. 15 2349

    Article  Google Scholar 

  17. Hao S, Xiaoqi Z, Zhiyu Z, Yanfang W and Chongfeng G 2018 ACS Appl. Mater. Interfaces 10 39912

    Article  Google Scholar 

  18. Wei T, Shi Y, Xie Y F, Dong Z, Zhao C Z, Zhou Q J et al 2017 Mater. Res. Bull. 88 206

  19. Zhen Y, Zhiguo X, Enchun L and Quanli L 2016 Dalton Trans. 45 16240

    Article  Google Scholar 

  20. Xiaofeng W, Shiping Z, Junbo H and Yunxin L 2021 Nano Lett. 21 272

    Article  Google Scholar 

  21. Gungun L and Dayong J 2021 ACS Sensors 6 4272

    Article  Google Scholar 

  22. Vetrone F, Naccache R, Zamarrón A, Juarranz A, Sanz-Rodríguez F, Martinez Maestro L et al 2010 ACS Nano 4 3254

    Article  CAS  Google Scholar 

  23. Yihang C, Jing C, Ye T, Wenna Z, Xiusha P, Hai G et al 2021 J. Rare Earths 39 1512

    Article  Google Scholar 

  24. Juan F, Xiaowu H, Fangfei L, Guzhi L and Dongcai G 2019 Ceram. Int. 45 24365

    Article  Google Scholar 

  25. Kun Z, Liping T, Yongfu M, Junfeng W, Zhengcai X and Yibo H 2019 J. Alloys Compd. 781 467

    Article  Google Scholar 

  26. Nengli W 2021 Infrared Phys. Technol. 118 103873

    Article  Google Scholar 

  27. Yinpeng H, Laihui L and Wei C 2019 J. Alloys Compd. 797 659

    Article  Google Scholar 

  28. Teng Z, Laihui L, Peng D, Anmeng D and Weiping L 2018 J. Eur. Ceram. Soc. 38 575

    Article  Google Scholar 

  29. Han X, Lei L, Jienan X, Youjie H, Degang D and Shiqing X 2019 J. Lumin. 209 8

    Article  Google Scholar 

  30. Yi G, Sun B, Yang F, Chen D, Zhou Y and Cheng J 2002 Chem. Mater. 14 2910

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the National Natural Science Foundation of China (Grant No. 51572195). We appreciate all our colleagues for their advice and support techniques during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxia Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, L., Zhao, Y., Wang, X. et al. Upconversion luminescence and temperature sensing properties of Er3+/Yb3+/Gd3+ co-doped YNbO4 phosphors. Bull Mater Sci 45, 232 (2022). https://doi.org/10.1007/s12034-022-02795-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02795-1

Keywords

Navigation