Skip to main content
Log in

Charge and rigidity effects on the encapsulation of quercetin by multilamellar vesicles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Although quercetin has a wide range of applications due to its biological properties, its activity may be affected due to its low solubility and its potential for degradation in a physiological environment. The nanoparticulate and microparticulate systems appear as a powerful strategy to enhance its biological activity as well as to contribute to the viability of this compound for pharmacological purposes. Here, we present an innovative and applied research to study the effect of different lipid compositions on the encapsulation of quercetin by using multilamellar vesicles (MLVs). For this purpose, the effects of charge and rigidity in the formulation’s average size, size distribution, charge properties, encapsulation and release efficiencies of this polyphenol were explored. Our results demonstrated that the rigidity imposed by cholesterol increased both the homogeneity of the size distribution and the encapsulation efficiency enabling a significant rate of quercetin release at the system with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/cholesterol (80:20). The charge modulated both the average size and size distribution as well as resulted in high encapsulation and release efficiencies in the formulation composed by (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (80:20). To the best of our knowledge, this is the first study concerning charge and rigidity effects on the encapsulation of quercetin in MLVs. Furthermore, the findings presented in this work is a starting point on the use of lipid composition as a modulating agent of important parameters in the development of nano and micro systems for controlled release.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Gorbenko N I, Borikov O Y, Kiprych T V, Ivanova O V, Taran K V and Litvinova T S 2021 Endocr. Regul. 55 182

    Article  Google Scholar 

  2. Zhou J, Fang L, Liao J, Li L, Yao W, Xiong Z et al 2017 PLoS One 12 e0172838

    Article  CAS  Google Scholar 

  3. Zhao L, Cen F, Tian F, Li M, Zhang Q, Shen H et al 2017 Exp. Ther. Med. 14 5942

    CAS  Google Scholar 

  4. Kalbassi M R, Behzadi T M and Paknejad H 2021 Iran Fish. Sci. J. 30 39

    Google Scholar 

  5. Oguz M, Dogan B, Durdagi S, Bhatti A A, Karakurt S and Yilmaz M 2021 New J. Chem. 45 18443

    Article  CAS  Google Scholar 

  6. Khursheed R, Singh S K, Wadhwa S, Gulati M, Kapoor B, Jain S K et al 2021 Int. J. Biol. Macromol. 189 744

    Article  CAS  Google Scholar 

  7. Morante-Zarcero S, Endrino A, Casado N, Pérez-Quintanilla D and Sierra I 2021 J. Porous Mater. 28 1

    Article  CAS  Google Scholar 

  8. Shaji J and Iyer S 2012 Asian J. Pharm. 6 218

    Article  CAS  Google Scholar 

  9. Berbel M E, Paiva A M, Chiari-Andréo B G, Lallo S B, Oshiro-Júnior J Á and Chiavacci L 2017 Int. J. Nanomed. 12 4991

    Article  Google Scholar 

  10. Bandara S, Molley T G, Kim H, Bharath P A, Kilian K and Leal C 2019 Mater. Horizons 7 125

    Article  Google Scholar 

  11. Schwendener R A 2014 Ther. Adv. Vaccines 2 159

    Article  CAS  Google Scholar 

  12. Jash A, Ubeyitogullari A and Rizvi S S H 2021 J. Mat. Chem. B 9 4773

    Article  CAS  Google Scholar 

  13. Omolo C A, Hassan D, Devnarain N, Jaglal Y, Mocktar C, Kalhapure R S et al 2021 Colloids Surf. B 207 112043

    Article  CAS  Google Scholar 

  14. Huh S Y, Shin J W, NA J I, Huh C H, Youn S W and Park K C 2010 J. Dermatol. 37 311

  15. Apolinário A C, Pachioni-Vasconcelos J A, Pessoa A Jr and Rangel Yagui C O 2017 Quim. Nova 40 810

    Google Scholar 

  16. Van Meer G, Voelker D R and Feigenson G W 2008 Nat. Rev. Mol. Cell Biol. 9 112

    Article  CAS  Google Scholar 

  17. Epand R M 1998 Biochim. Biophys. Acta 1376 353

    Article  CAS  Google Scholar 

  18. Jovanović A A, Balanč B D, Ota A, Grabnar P A, Djordjević V B, Šavikin K P et al 2018 Eur. J. Lipid Sci. Technol. 120 1800039

    Article  CAS  Google Scholar 

  19. Henriksen J, Rowat A C and Ipsen J H 2004 Eur. Biophys. J. 8 732

    Article  CAS  Google Scholar 

  20. Arriaga L R, Lopez-Montero I, Monroy F, Orts-Gil G, Farago B and Hellweg T 2009 Biophys. J. 96 3619

    Article  CAS  Google Scholar 

  21. Alvares D S, Monti M R, Ruggiero Neto J and Wilke N 2021 Biochim. Biophys. Acta Adv. 1 100002

    CAS  Google Scholar 

  22. Goñi F M, Alonso A, Bagatolli L A, Brown R E, Marsh D, Prieto M et al 2008 Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 1781 665

    Article  CAS  Google Scholar 

  23. De Almeida R F M, Fedorov A and Prieto M 2003 Biophys. J. 85 2406

    Article  Google Scholar 

  24. Santos N C, Prieto M and Castanho M A R B 2003 Biochim. Biophys. Acta-Biomembr. 1612 123

    Article  CAS  Google Scholar 

  25. Marsh D 2010 Chem. Phys. Lipids 163 667

    Article  CAS  Google Scholar 

  26. Baishya H 2017 J. Dev. Drugs 6 1000171

    Article  CAS  Google Scholar 

  27. Silva R T C, Dalmolin L F, Moreto J A, Oliveira C G, Machado A E H, Lopez R F V et al 2020 J. Nanopart. Res. 22 239

    Article  CAS  Google Scholar 

  28. Suman S, Roy A, Bahadur S and Choudhury A 2018 Res. J. Pharm. Technol. 11 61

    Article  Google Scholar 

  29. Kahya N and Schwille P 2006 J. Fluoresc. 16 671

    Article  CAS  Google Scholar 

  30. Rich G T, Buchweitz M, Winterbone M S, Kroon P A and Wilde P J 2017 Nutrients 9 111

    Article  CAS  Google Scholar 

  31. Leite N B, Martins D B, Alvares D S and Cabrera M P S 2022 Chem. Phys. Lipids 20 242

    Google Scholar 

  32. Sanver D, Sadeghpour A, Rappolt M, Di Meo F and Trouillas P 2020 Langmuir 40 11776

    Article  CAS  Google Scholar 

  33. Jindal S, Awasthi R, Singare D and Kulkarni G T 2021 J. Res. Pharm. 25 34

    CAS  Google Scholar 

  34. Pivetta T P, Silva L B, Kawakami C M, Araujo M M, Del Lama M P F M, Naal R M Z G et al 2019 J. Drug Deliv. Sci. Technol. 53 101148

    Article  CAS  Google Scholar 

  35. Pinheiro M, Lúcio M, Lima J L and Reis S 2011 Nanomed. 6 1413

    Article  CAS  Google Scholar 

  36. Fatouros D G and Antimisiaris S G 2002 J. Colloid Interface Sci. 251 271

    Article  CAS  Google Scholar 

  37. Lawrence S, Alpar H, McAllister S and Brown M 1993 J. Drug Target. 1 303

    Article  CAS  Google Scholar 

  38. Espiritu R A, Cornelio K, Kinoshita M, Matsumori N, Murata M, Nishimura S et al 2016 Biochim. Biophys. Acta 1858 1373

    Article  CAS  Google Scholar 

  39. Bangham A D 1968 Prog. Biophys. Mol. Biol. 18 29

    Article  CAS  Google Scholar 

  40. Bonechi C, Donatia A, Tamasi G, Leone G, Consumi M, Rossi C et al 2018 Biophys. Chem. 233 55

    Article  CAS  Google Scholar 

  41. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A et al 2018 Pharmaceutics 10 57

    Article  CAS  Google Scholar 

  42. Ricci M, Olivia R, Del Vecchio P, Paolantoni M, Moressi A and Sassi P 2016 Biochim. Biophys. Acta 1858 3024

    Article  CAS  Google Scholar 

  43. Bhattacharya S and Haldar S 2000 Biochim. Biophys. Acta 1467 39

    Article  CAS  Google Scholar 

  44. Mandić L, Sadžak A, Strasser V, Baranović G, Domazet Jurašin D, Dutour Sikirić M et al 2019 Int. J. Mol. Sci. 20 2709

    Article  CAS  Google Scholar 

  45. Sciolla F, Truzzolillo D, Chauveau E, Trabalzini S, Di Marzio L, Carafa M et al 2021 Colloids Surf. B 208 112054

    Article  CAS  Google Scholar 

  46. Mano C M, Guaratini T, Cardozo K H M, Colepicolo P, Bechara E J H and Barros M P 2018 Drugs 16 126

    Google Scholar 

  47. Váňová J, Laura J L, Petr Č and Susanne K W 2017 Cogent. Chem. 3 1385173

    Article  CAS  Google Scholar 

  48. Paquet-Côté P A, Tuck K L, Paradis J P, Graham B and Voyer N 2017 Tetrahedron Lett. 58 4672

    Article  CAS  Google Scholar 

  49. Batista C M, Carvalho C M B and Magalhães N S S 2007 Ver. Bras. Cienc. Farm. 43 167

    Article  CAS  Google Scholar 

  50. Tukey J W (eds) 1977 Exploratory data analysis (Massachusetts: Addison-Wesley) p 27

  51. Ramli N, Nora’aini A and Hamzah S 2020 J. Sustain Sci. Manag. 15 15

    Article  CAS  Google Scholar 

  52. Toniazzo T, Peres M S, Ramos A P and Pinho S C 2017 Food Biosci. 19 17

    Article  CAS  Google Scholar 

  53. Huang M, Su E, Zheng F and Tan C 2017 Food Funct. 8 3198

    Article  CAS  Google Scholar 

  54. Codevilla C, Bazana M, Silva C and Barin J M C 2015 Cienc. Nat. 37 142

    Google Scholar 

  55. Geethi P, Veranja K D and Nedra K 2016 J. Nanomater. 2016 1

    Google Scholar 

  56. Kumar R, Choudhary D K and Debnath M 2020 Mater. Res. Express. 7 1

    CAS  Google Scholar 

  57. Mura P, Maestrelli F, D’Ambrosio M, Luceri C and Cirri M 2021 Pharmaceutics 13 437

    Article  CAS  Google Scholar 

  58. Haghiralsadat F, Amoabediny G, Helder M N, Naderinezhad S, Sheikhha M H, Forouzanfar T et al 2018 Artif. Cells Nanomed. Biotechnol. 46 169

    Article  CAS  Google Scholar 

  59. Jain A and Jain S K 2016 Chem. Phys. Lipids 201 28

    Article  CAS  Google Scholar 

  60. Faria D M, Dourado Júnior S M, Nascimento J P L, Nunes E S, Marques R P, Rossino L S et al 2016 Mater. Res. 20 225

    Article  CAS  Google Scholar 

  61. Dourado Junior S M, Nunes E S, Marques R P, Rossino L S, Quites F J, Siqueira Junior J R et al 2017 J. Mater. Sci. 52 9491

    Article  CAS  Google Scholar 

  62. Siepmann J and Siepmann F 2006 Prog. Colloid Polym. Sci. 133 15

    Article  CAS  Google Scholar 

  63. Huang X and Brazel C S 2001 J. Control. Release 73 121

    Article  CAS  Google Scholar 

  64. Siepmann J, Faisant N and Benoit J P 2002 Pharm. Res. 19 1885

    Article  CAS  Google Scholar 

  65. Siepmann J and Peppas N A 2001 Adv. Drug Deliv. Rev. 48 139

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NBL slade acknowledges the financial support from Research Supporting Foundation of Minas Gerais State (FAPEMIG-Brazil; Grant APQ-00554-21). J A Moreto would like to acknowledge the financial support received from the National Council of Technological and Scientific Development (CNPq-Brazil; Grant 303659/2019-0) and Research Supporting Foundation of Minas Gerais State (FAPEMIG-Brazil; Grant APQ-02276-18). We are thankful to Prof. Dr M P dos Santos Cabrera for donating the quercetin sample, Prof. Dr J Ruggiero Neto for the use of the ZetaSizer Nano ZS90 (Malvern Instruments Ltd, Worcestershire, UK), Prof. Dr P I S Maia and the Biochemistry Department of UFTM for the structures and equipment made available. Mendes also thanks the Coordination for the Improvement of Higher Education Personnel (CAPES) for the scholarship and Graduate Program in Materials Science and Technology (PPGCTM-UFTM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natália Bueno Leite Slade.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Custódio, L., Mendes, L.A., Alvares, D.S. et al. Charge and rigidity effects on the encapsulation of quercetin by multilamellar vesicles. Bull Mater Sci 45, 159 (2022). https://doi.org/10.1007/s12034-022-02734-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02734-0

Keywords

Navigation