Skip to main content

Advertisement

Log in

Prediction of dynamical, thermodynamic and mechanical properties of RuMnAs compound under hydrostatic pressure

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical, dynamical and thermodynamical properties of the RuMnAs compound have been explored using the first-principle calculations under hydrostatic pressure. The sample material is stable in the FCC cubic phase verified by the elastic constants and positive cohesive energy up to a pressure of 15 GPa. The positive phonon frequency further strengthened the dynamical stability of the material in the cubic phase. The lattice constant of the system decreases linearly with the influence of pressure. The independent elastic constants (\({C}_{11}\) and \({C}_{12}\)), hardness of the material, ionic bonding and the ductility of the system increase almost linearly due to applied pressure. The thermodynamics study reflects that pressure has a negative effect on heat capacity, coefficient of thermal expansion and Gruneisen parameter in the examined compound, although Debye temperature increases with increased pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Galanakis I 2016 Springer Ser. Mater. Sci. 222 3

    Article  CAS  Google Scholar 

  2. De Groot R A, Mueller F M, Engen P G V and Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    Article  Google Scholar 

  3. Kalita D, Limbu N, Ram M, Kalita R and Saxena A 2021 Mater. Today Commun. 29 102799

    Article  CAS  Google Scholar 

  4. Kalita D, Limbu N, Ram M and Saxena A 2022 Int. J. Quantum Chem. e26951. https://doi.org/10.1002/qua.26951

  5. Ameri M, Touia A, Khenata R, Al-Douri Y and Baltache H 2013 Optik 124 570

    Article  CAS  Google Scholar 

  6. Borgohain P and Sahariah M B 2015 J. Phys. Condens. Matter 27 175502

    Article  Google Scholar 

  7. Meng W, Zhang X, He T, Jin L, Dai X, Liu Y et al 2020 J. Adv. Res. 24 523

    Article  CAS  Google Scholar 

  8. Müller R A, Desilets-Benoit A, Gauthier N, Lapointe L, Bianchi A D, Maris T et al 2015 Phys. Rev. B 92 184432

    Article  Google Scholar 

  9. Mostari F, Rahman A and Khatun R 2020 Int. J. Mater. Math. Sci. 2 51

    Google Scholar 

  10. Ma J, Hegde V I, Munira K, Xie Y, Keshavarz S, Mildebrath D T et al 2017 Phys. Rev. B 95 024411

    Article  Google Scholar 

  11. Mehmood N and Ahmad R 2018 J. Supercond. Nov. Magn. 31 233

    Article  CAS  Google Scholar 

  12. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C et al 2009 J. Phys. Condens. Matter 21 395502

    Article  Google Scholar 

  13. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  14. Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188

    Article  Google Scholar 

  15. Dal Corso A 2016 J. Phys.: Condens. Matter 28 075401

    Google Scholar 

  16. Otero-De-La-Roza A, Abbasi-Pérez D and Luaña V 2011 Comput. Phys. Commun. 182 2232

    Article  CAS  Google Scholar 

  17. Birch F 1947 Phys. Rev. 71 809

    Article  CAS  Google Scholar 

  18. Gupta Y, Sinha M M and Verma S S 2019 AIP Conf. Proc. 2162

  19. Shi F, Si M S, Xie J, Mi K, Xiao C and Luo Q 2017 J. Appl. Phys. 122 215701

    Article  Google Scholar 

  20. Kalita D, Ram M, Limbu N and Saxena A 2021 J. Phys. Condens. Matter 34 85501

    Article  Google Scholar 

  21. Moniri S M, Nourbakhsh Z and Mostajabodaavati M 2011 Mod. Phys. Lett. B 25 2079

    Article  CAS  Google Scholar 

  22. Javed M, Sattar M A, Benkraouda M and Amrane N 2020 Mater. Today Commun. 25 101519

    Article  CAS  Google Scholar 

  23. Kalita D and Saxena A 2021 Investigation of Elastic and Dynamical Properties of RhTiSb Proc. of 28th Nat. Conf. on Condensed Matter Physics vol 269 (Springer Proceedings in Physics) (Singapore: Springer)

  24. Chibani S, Arbouche O, Zemouli M, Benallou Y, Amara K, Chami N et al 2018 Comput. Condens. Matter 16 e00312

    Article  Google Scholar 

  25. Slack G A 1979 Solid State Phys.—Adv. Res. Appl. 34 1–7

Download references

Acknowledgement

D Kalita acknowledges the Department of Science and Technology, Government of India, for providing financial assistance through INSPIRE fellowship with award number IF190898.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipangkar Kalita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, D., Gupta, Y. & Saxena, A. Prediction of dynamical, thermodynamic and mechanical properties of RuMnAs compound under hydrostatic pressure. Bull Mater Sci 45, 144 (2022). https://doi.org/10.1007/s12034-022-02725-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02725-1

Keywords

Navigation