Skip to main content
Log in

Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Electrospun nanofibres can be used in nanosensors, nanofilters, catalysts, tissue scaffolds, batteries, solar cells, protective clothing and so on. The major improvement in various applications is brought about by the enhanced surface area of the electrospun nanofibres. We employed a statistical approach to optimize electrospinning process parameters to produce cellulose acetate (CA) nanofibre mat with Brunauer–Emmett–Teller (BET) surface area as the response variable. The selected variables (applied voltage, distance between needle and collector, and flow rate of solution) were optimized by response surface methodology (Central Composite Design–CCD) to capture the linear and quadratic influence to maximize specific surface area (SSA) of electrospun fibre mat measured by BET analyzer. The predicted model was significant with R2 value of 0.91 and adjusted R2 value of 0.83. This model predicted the SSA of 2.34 m2 g−1 for the optimized parameters 24.8 kV voltage, 12 cm distance between needle and collector and 0.04 ml min−1 flow rate. The difference between the predicted value and the experimental result at the same parameters setting was less than 5%. The obtained results confirmed that the selected CCD model appropriately presented the performance of selected parameters in the prediction of SSA of CA nanofibre mat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Teo W E and Ramakrishna S 2006 Nanotechnology 17 R89

    Article  CAS  Google Scholar 

  2. Huang Z M, Zhang Y Z, Kotaki M and Ramakrishna S 2003 Compos. Sci. Technol. 63 2223

    Article  CAS  Google Scholar 

  3. Bhardwaj N and Kundu S C 2010 Biotechnol. Adv. 28 325

    Article  CAS  Google Scholar 

  4. Deitzel J M, Kleinmeyer J, Harris D and BeckTan N C 2001 Polymer 42 261

    Article  CAS  Google Scholar 

  5. Ki C S, Baek D H, Gang K D, Lee K H, Um I C and Park Y H 2005 Polymer 46 5094

    Article  CAS  Google Scholar 

  6. Li D and Xia Y 2004 Adv. Mater. 16 1151

    Article  CAS  Google Scholar 

  7. Yoon K, Hsiao B S and Chu B 2008 J. Mater. Chem. 18 5326

    Article  CAS  Google Scholar 

  8. Won K S, Donghwan C and Won H P 2006 Nanotechnology 17 439

    Article  Google Scholar 

  9. Luo C J, Stoyanov S D, Stride E, Pelan E and Edirisinghe M 2012 Chem. Soc. Rev. 41 4708

    Article  CAS  Google Scholar 

  10. Baji A, Mai Y W, Wong S C, Abtahi M and Chen P 2010 Compos. Sci. Technol. 70 703

    Article  CAS  Google Scholar 

  11. Casper C L, Stephens J S, Tassi N G, Chase D B and Rabolt J F 2004 Macromolecules 37 573

    Article  CAS  Google Scholar 

  12. Zhang D and Chang J 2008 Nano Lett. 8 3283

    Article  CAS  Google Scholar 

  13. Nasir M, Matsumoto H, Danno T, Minagawa M, Irisawa T, Shioya M et al 2006 J. Polym. Sci. Part B: Polym. Phys. 44 779

    Article  CAS  Google Scholar 

  14. Yördem O S, Papila M and Menceloğlu Y Z 2008 Mater. Design 29 34

    Article  Google Scholar 

  15. Megelski S, Stephens J S, Chase D B and Rabolt J F 2002 Macromolecules 35 8456

    Article  CAS  Google Scholar 

  16. Ding B, Yamazaki M and Shiratori S 2005 Sens. Actuators B: Chem. 106 477

    Article  CAS  Google Scholar 

  17. Ding B, Kim H Y, Lee S C, Shao C L, Lee D R, Park S J et al 2002 J. Polym. Sci. Part B: Polym. Phys. 40 1261

    Article  CAS  Google Scholar 

  18. Ma M, Mao Y, Gupta M, Gleason K K and Rutledge G C 2005 Macromolecules 38 9742

    Article  CAS  Google Scholar 

  19. Naderi N, Agend F, Faridi-Majidi R, Sharifi-Sanjani N and Madani M 2008 J. Nanosci. Nanotechnol. 8 2509

    Article  CAS  Google Scholar 

  20. Konwarh R, Misra M, Mohanty A K and Karak N 2013 Carbohydr. Polym. 92 1100

    Article  CAS  Google Scholar 

  21. Dalton P D, Vaquette C, Farrugia B L, Dargaville T R, Brown T D and Hutmacher D W 2013 Biomater. Sci. 1 171

    Article  CAS  Google Scholar 

  22. Liu Y, Wang Q, Lu Y, Deng H and Zhou X 2020 Int. J. Biol. Macromol. 152 672

    Article  CAS  Google Scholar 

  23. Jia Y, Yu H, Zhang Y, Dong F and Li Z 2016 Colloid Surf. B Biointerfaces 148 263

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr P G Patil and Dr Sujata Saxena of ICAR-CIRCOT, Mumbai, for guidance and technical support. We acknowledge the funding support from the Indian Council of Agricultural Research through National Agricultural Science Fund (Mn 4017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Vigneshwaran.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6667 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabu, G.T.V., Guruprasad, R., Sundaramoorthy, C. et al. Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology. Bull Mater Sci 45, 133 (2022). https://doi.org/10.1007/s12034-022-02712-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02712-6

Keywords

Navigation