Skip to main content

Advertisement

Log in

Photoluminescence and energy transfer mechanism in Y6Ba4(SiO4)6F2 apatite phosphors doped with cerium and terbium

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Y6Ba4(SiO4)6F2 (YBSF) phosphors having apatite structure was doped with cerium and terbium and prepared by solid-state reaction method. Structural and photoluminescence properties of the prepared apatite phosphors were studied and discussed in detail. X-ray diffraction graph affirms that the prepared phosphor has hexagonal symmetry with space group P63/m, representing the apatite structure. Scanning electron microscopy reveals the morphology of the prepared phosphor and clearly shows an elongated rod-like structure. Energy dispersive X-ray spectroscopy pattern confirms the presence of all initial constituents in YBSF:0.6Ce3+, xTb3+. Fourier transform infrared spectroscopy study was conducted to identify various functional groups present in the prepared phosphors. Photoluminescence excitation and photoluminescence emission spectra of YBSF:0.8Tb3+ and YBSF:0.6Ce3+,xTb3+ (x = 0, 0.2, 0.4, 0.6, 0.8 and 1 mol%) were obtained and studied. Photoluminescence spectra successfully established the energy transfer mechanism working between Ce3+ and Tb3+ ions and the energy transfer efficiency was found to be 66%. Commission Internationale de I’Eclairage(CIE) chromaticity coordinate clearly shows the colour tenability property of YBSF:0.6Ce3+,xTb3+. The emitted light in YBSF:0.6Ce3+,xTb3+ depends on the concentration of Tb3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Stefani R, Rodrigues L, Carvalho C, Felinto M, Brito H, Lastusaari M et al 2009 Opt. Mater. (Amst) 31 1815

    Article  CAS  Google Scholar 

  2. Gupta S, Mohapatra M, Kaity S, Natarajan V and Godbole S 2012 J. Lumin. 132 1329

    Article  CAS  Google Scholar 

  3. Cai J, Pan H and Wang Y 2012 Int. J. Min. Meta Mater. 19 663

    Article  CAS  Google Scholar 

  4. Desirena H, Diaz-Torres L, Rodríguez R, Meza O, Salas P, Angeles-Chavez C et al 2014 J. Lumin. 153 21

    Article  CAS  Google Scholar 

  5. Park I, Kim D, Lee J, Lee S and Kim K 2007 Mater. Chem. Phys. 106 149

    Article  CAS  Google Scholar 

  6. Manam J, Kumari P and Das S 2011 Appl. Phys. A Mater. Sci. Process. 104 197

    Article  CAS  Google Scholar 

  7. Liu H, Liao L, Zhang Y, Zhou T, Guo Q, Li L et al 2017 Dyes Pigm. 87 140

    Google Scholar 

  8. Zhang S, Li C, Pang R, Jiang L, Shi L and Su Q 2011 J. Lumin. 131 2730

    Article  CAS  Google Scholar 

  9. Smet P, Korthout K, Haecke J and Poelman D 2008 Mater. Sci. Eng. B 146 264

    Article  CAS  Google Scholar 

  10. Naidu B, Pandey M, Nuwad J, Sudarsan V, Vatsa R, Kshirsagar R et al 2011 Inorg. Chem. 50 4463

    Article  CAS  Google Scholar 

  11. Baklanova Y, Maksimova L, Denisova T, Tyutyunnik A and Zubkov V 2019 Opt. Mater. (Amst) 87 122

    Article  CAS  Google Scholar 

  12. Binnemans K, Jones P, Blanpain B, Gerven T, Yang Y, Walton A et al 2013 J. Clean. Prod. 51 1

    Article  CAS  Google Scholar 

  13. Smet P, Moreels I, Hens Z and Poelman D 2010 Materials 3 2834

    Article  CAS  Google Scholar 

  14. Palan C, Bajaj N and Omanwar S 2016 Bull. Mater. Sci. 39 1619

    Article  CAS  Google Scholar 

  15. Naidu B, Pandey M, Sudarsan V, Ghatak J and Vatsa R 2011 J. Nanosci. Nanotehnol. 11 3180

    Article  CAS  Google Scholar 

  16. Naidu B, Sudarsan N and Vatsa R 2009 J. Nanosci. Nanotehnol. 9 2997

    Article  CAS  Google Scholar 

  17. Bi J, Li J, Guan W, Chen J and Sun X 2014 Key Eng. Mater. 602–603 1028

    Article  CAS  Google Scholar 

  18. Wang J, Han T, Lang T, Tu M and Peng L 2015 Opt. Eng. 54 117106

    Article  Google Scholar 

  19. Zhao Y, Xu H, Zhang X, Zhu G, Yan D, Ling Q et al 2016 Mater. Lett. 173 223

    Article  CAS  Google Scholar 

  20. Parmentier A, Smet P and Poelman D 2013 Materials 6 3663

    Article  Google Scholar 

  21. Blasse G 1984 Chem. Phys. Lett. 104 160

    Article  CAS  Google Scholar 

  22. Guo Q, Liao L and Xia Z 2014 J. Lumin. 145 65

    Article  CAS  Google Scholar 

  23. Wang J, Lin H, Huang Q, Xiao G, Xu J, Wang B et al 2017 J. Mater. Chem. C 5 1789

    Article  CAS  Google Scholar 

  24. Boyer L, Piriou B, Carpena J and Lacout J 2000 J. Alloys Comd. 311 143

    Article  CAS  Google Scholar 

  25. Qi S, Xie H, Huang Y, Kim S and Seo H 2014 Opt. Mater. Exp. 4 190

    Article  CAS  Google Scholar 

  26. Chen H, Chang S, Weng M and Yang R 2012 Adv. Mater. Res. 344 106

    Article  Google Scholar 

  27. Sahu P and Agrawal S 2021 IOP conf. Ser. Mater. Sci. Engg. 1120 012006

    Article  CAS  Google Scholar 

  28. Gong X, Lin Y, Chen Y, Huang Z, Huang Y and Luo Z 2005 Chem. Mater. 17 1135

    Article  CAS  Google Scholar 

  29. Kirm M, Feldbach E, Magi H, Nagirnyi V, Toldsepp E, Vielhauer S et al 2017 Proc. Esto. Acad. Sci. 66 383

    Article  Google Scholar 

  30. Bharat L, Dugasani S, Raju G and Yu J 2017 Nanotechnology 28 375601

    Article  CAS  Google Scholar 

  31. Nunes A, Peres A, Chaves A and Ferreira W 2019 J. Mater. Res. Technol. 8 3623

    Article  CAS  Google Scholar 

  32. Modi D, Srinivas M, Tawde D, Murthy K, Verma V and Patel N 2015 J. Exper. Nanosci. 10 777

    Article  CAS  Google Scholar 

  33. Eeckhout K, Poelman D and Smet P 2013 Materials 6 2789

    Article  CAS  Google Scholar 

  34. Jiang D, Wen J, Jia M, Guo Q, Xiao Z, Luo W et al 2018 Opt. Mater. Express 8 1593

    Article  CAS  Google Scholar 

  35. Zhang Y, Li D, Pun E, Zhao X and Lin H 2017 J. Lumin. 187 85

    Article  CAS  Google Scholar 

  36. Mickens M and Assefa Z 2004 J. Lumin. 145 498

    Article  CAS  Google Scholar 

  37. Wang B, Liu Y, Huang Z and Fang M 2018 RSC Adv. 8 15587

    Article  CAS  Google Scholar 

  38. Mao Z, Wang D, Lu Q, Yu W and Yuan Z 2009 Chem. Commun. 3 346

    Article  Google Scholar 

  39. Wang J, Zhang W, Qi S, Guan Y and Lu J 2014 J. Alloys Compd. 589 120

    Article  CAS  Google Scholar 

  40. Blasse G 1969 Philips. Res. Repts. 24 131

    CAS  Google Scholar 

  41. Zhang W, Lou Q, Ji W, Zhao J and Zhong X 2014 Chem. Mater. 26 1204

    Article  CAS  Google Scholar 

  42. Lee G and Kang S 2011 J. Lumin. 131 2606

    Article  CAS  Google Scholar 

  43. Ma M, Li C, Shu D, Wang C and Xi P 2018 Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 190 68

  44. Yang H, Noh H and Jeong J 2014 Solid State Sci. 27 43

    Article  CAS  Google Scholar 

  45. Xia Z, Zhou J and Mao Z 2013 J. Mater. Chem. C 1 5917

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhana Agrawal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar Sahu, P., Agrawal, S. Photoluminescence and energy transfer mechanism in Y6Ba4(SiO4)6F2 apatite phosphors doped with cerium and terbium. Bull Mater Sci 45, 132 (2022). https://doi.org/10.1007/s12034-022-02705-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02705-5

Keywords

Navigation