Skip to main content
Log in

Structural and photoluminescence behavior of a blue–green-emitting Y6Ba4(SiO4)6F2:xTb3+ fluorapatite phosphor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Fluorapatite-structured phosphors with structural formula Y6Ba4(SiO4)6F2 (YBSF) doped with different mol% (0.2, 0.4, 0.6, 0.8 & 1) of terbium were synthesized by solid-state reaction method and its structural and photoluminescence (PL) properties were studied. X-ray diffraction (XRD) patterns confirm that the prepared phosphors were successfully synthesized in the form of hexagonal crystal structure with space group P63/m. Prepared phosphors are polycrystalline in nature with rod-like structure and all the initial reactants were present. Presence of Si–H stretching in Fourier transform Infrared spectroscopy confirms the successful incorporation of terbium ion in the Host lattice. Photoluminescence excitation and emission spectra of the as-prepared phosphors show different transition of 4f8–4f75d and 4f–4f; moreover, the prepared phosphors when excited with 250 nm show blue emission due to 5D37FJ and show green emission due to 5D47FJ when excited by 290 nm. The results indicate that the emitted wavelength depend on excited wavelength and, therefore, can be tuned accordingly. The mechanism behind color tuning is due to cross-relaxation process which is discussed in detail in the present paper. The prepared phosphors showed high quantum efficiency with satisfactory thermal stability. Commission Internationale de I’Eclairage chromaticity coordinate also shows the shifting from blue region to green region for the prepared phosphors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M.S. Bhagat, K.N. Shinde, N. Singh, M.S. Pathak, P.K. Singh, S.U. Pawar, V. Singh, Photoluminescence properties of green emitting CaY2Al4 SiO12:Tb3+ garnet phosphor. Optik (Stuttg). 161, 111–117 (2018). https://doi.org/10.1016/j.ijleo.2018.02.016

    Article  CAS  Google Scholar 

  2. Y.M. Ji, D.Y. Jiang, J.L. Shi, Preparation and spectroscopic properties of La2Hf2O7/Tb. Mater. Lett. 59, 868–871 (2005). https://doi.org/10.1016/j.matlet.2004.11.033

    Article  CAS  Google Scholar 

  3. S. Wang, Q. Sun, B. Li, H. Guo, X. Huang, High-efficiency and thermal-stable tunable blue-green-emitting Ca3Lu(AlO)3(BO3)4:Ce3+, Tb3+ phosphors for near-UV-excited white LEDs. Dyes Pigments 157, 314–320 (2018). https://doi.org/10.1016/j.dyepig.2018.05.010

    Article  CAS  Google Scholar 

  4. J. Wang, T. Han, T. Lang, M. Tu, L. Peng, Synthesis and photoluminescence properties of cerium-doped terbium–yttrium aluminum garnet phosphor for white light-emitting diodes applications. Opt. Eng. 54, 117106 (2015). https://doi.org/10.1117/1.oe.54.11.117106

    Article  Google Scholar 

  5. J. Cai, H. Pan, Y. Wang, Synthesis and luminescence properties of Ca2 SiO4 -based red phosphors with Sm3+ doping for white LEDs. Int. J. Miner. Metall. Mater. 19, 663–667 (2012). https://doi.org/10.1007/s12613-012-0610-6

    Article  CAS  Google Scholar 

  6. Y. Zhao, H. Xu, X. Zhang, G. Zhu, D. Yan, Q. Ling, M. Chen, A. Yu, Synthesis and optical properties of T2.9Al5O12:0.1Ce3+ phosphor film from facile sol-gel technology. Mater. Lett. 173, 223–226 (2016). https://doi.org/10.1016/j.matlet.2016.03.056

    Article  CAS  Google Scholar 

  7. H.K. Yang, H.M. Noh, J.H. Jeong, Low temperature synthesis and luminescence investigations of YAG:Ce, Eu nanocomposite powder for warm white light-emitting diode. Solid State Sci. 27, 43–46 (2014). https://doi.org/10.1016/j.solidstatesciences.2013.11.007

    Article  CAS  Google Scholar 

  8. S. Zhang, C. Li, R. Pang, L. Jiang, L. Shi, Q. Su, Energy transfer and excitation wavelength dependent long-lasting phosphorescence in Pr3+ activated Y3Al5O12. J. Lumin. 131, 2730–2734 (2011). https://doi.org/10.1016/j.jlumin.2011.07.001

    Article  CAS  Google Scholar 

  9. M. Jiao, N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao, B. Shao, H. You, Synthesis, structure and photoluminescence properties of europium-, terbium-, and thulium-doped Ca3Bi(PO4)3 phosphors. Dalt. Trans. 42, 12395–12402 (2013). https://doi.org/10.1039/c3dt50552a

    Article  CAS  Google Scholar 

  10. J.Y. Park, H.C. Jung, G.S.R. Raju, J.H. Jeong, B.K. Moon, J.H. Kim, Y.K. Lee, Solvothermal synthesis and luminescence properties of the novel aluminum garnet phosphors for WLED applications. Curr. Appl. Phys. 13, 441–447 (2013). https://doi.org/10.1016/j.cap.2012.09.001

    Article  Google Scholar 

  11. Q. Guo, L. Liao, L. Mei, H. Liu, Structures and luminescent properties of single-phase. J. Lumin. 172, 191–196 (2016). https://doi.org/10.1016/j.jlumin.2015.12.013

    Article  CAS  Google Scholar 

  12. G. Blasse, Luminescence of calcium halophosphate-Sb3+, Mn2+ at low temperatures. Chem. Phys. Lett. 104, 160–162 (1984). https://doi.org/10.1016/0009-2614(84)80188-8

    Article  CAS  Google Scholar 

  13. G. Zhu, Y. Shi, M. Mikami, Y. Shimomura, Y. Wang, Design, synthesis and characterization of a new long wavelength Ce3+ emission. Opt. Mater. Express. 3, 229–236 (2013)

    Article  CAS  Google Scholar 

  14. B. Sio, Luminescence properties and energy transfer. J. Lumin. 145, 65–70 (2014). https://doi.org/10.1016/j.jlumin.2013.07.035

    Article  CAS  Google Scholar 

  15. Y. Masubuchi, M. Higuchi, T. Takeda, S. Kikkawa, Oxide ion conduction mechanism in RE9.33(SiO4)6O2 and Sr2RE8(SiO4)6O2 (RE = La, Nd) from neutron powder diffraction. Solid State Ionics 177, 263–268 (2006). https://doi.org/10.1016/j.ssi.2005.09.015

    Article  CAS  Google Scholar 

  16. E.E. Jay, M.J. Rushton, R.W. Grimes, Migration of fluorine in fluorapatite—a concerted mechanism. J. Mater. Chem. 22, 6097–6103 (2012). https://doi.org/10.1039/c2jm16235k

    Article  CAS  Google Scholar 

  17. L. Calderín, M.J. Stott, A. Rubio, Electronic and crystallographic structure of apatites. Phys. Rev. B 67, 1–7 (2003). https://doi.org/10.1103/PhysRevB.67.134106

    Article  CAS  Google Scholar 

  18. N.L. Ignjatović, L. Mančić, M. Vuković, Z. Stojanović, M.G. Nikolić, S. Škapin, S. Jovanović, L. Veselinović, V. Uskoković, S. Lazić, S. Marković, M.M. Lazarević, D.P. Uskoković, Rare-earth (Gd3+, Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. Sci. Rep. 9, 1–15 (2019). https://doi.org/10.1038/s41598-019-52885-0

    Article  CAS  Google Scholar 

  19. N.M. Khaidukov, M. Kirm, E. Feldbach, H. Mägi, V. Nagirnyi, E. Tõldsepp, S. Vielhauer, T. Jüstel, T. Jansen, V.N. Makhov, Luminescence properties of silicate apatite phosphors M2La8Si6O26: Eu (M = Mg, Ca, Sr). J. Lumin. 191, 51–55 (2017). https://doi.org/10.1016/j.jlumin.2017.01.033

    Article  CAS  Google Scholar 

  20. X. Gong, Y. Lin, Y. Chen, Z. Huang, Y. Huang, Z. Luo, Syntheses, structure, and characterization of crystal La6Ba4(SiO4)6F2, a promising laser host. Chem. Mater. 17, 1135–1138 (2005). https://doi.org/10.1021/cm048140l

    Article  CAS  Google Scholar 

  21. J. Zhou, T. Yao, J. Lian, Y. Shen, Z. Dong, F. Lu, Nuclear Instruments and methods in physics research B radiation-induced amorphization of Ce-doped Mg2Y8 (SiO4)6O2 silicate apatite. Nucl. Instrum. Methods Phys. 8, 8–12 (2016). https://doi.org/10.1016/j.nimb.2016.04.008

    Article  CAS  Google Scholar 

  22. D. Jiang, J. Wen, M. Jia, Q. Guo, Z. Xiao, W. Luo, F. Pang, Z. Chen, T. Wang, Luminescence and energy transfer characteristics in silica optical fiber materials with cerium and terbium co-doping. Opt. Mater. Express. 8, 1593 (2018). https://doi.org/10.1364/ome.8.001593

    Article  CAS  Google Scholar 

  23. Y.V. Baklanova, L.G. Maksimova, T.A. Denisova, A.P. Tyutyunnik, V.G. Zubkov, Synthesis and luminescence properties of Tb3+ and Dy3+ doped Li7La3Hf2O12 with tetragonal garnet structure. Opt. Mater. (Amst) 87, 122–126 (2019). https://doi.org/10.1016/j.optmat.2018.04.041

    Article  CAS  Google Scholar 

  24. C.B. Palan, N.S. Bajaj, S.K. Omanwar, Luminescence properties of terbium-doped Li3PO4 phosphor for radiation dosimetry. Bull. Mater. Sci. 39, 1619–1623 (2016). https://doi.org/10.1007/s12034-016-1309-5

    Article  CAS  Google Scholar 

  25. J. Bi, J.G. Li, W. Guan, J. Chen, X. Sun, Co-precipitation synthesis and photoluminescence properties of Ce3+ activated terbium aluminum garnet (Tb1-xCex)3Al5O12 (0≤x≤0.05) yellow phosphors. Key Eng. Mater. 602–603, 1028–1033 (2014). https://doi.org/10.4028/www.scientific.net/KEM.602-603.1028

    Article  CAS  Google Scholar 

  26. J. Zhang, Z. Hua, H. Jiao, Investigation on photoluminescence of Ca2Gd8(SiO4)6O2:Ce3+, Tb3+, Mn2+ phosphors. Mater. Res. Bull. (2017). https://doi.org/10.1016/j.materresbull.2017.07.050

    Article  Google Scholar 

  27. N.C. Chen, C.C. Liao, C.C. Chen, W.T. Fan, J.H. Wu, J.Y. Li, S.P. Chen, B.R. Huang, L.L. Lee, Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure. Nanoscale Res. Lett. 9, 1–5 (2014). https://doi.org/10.1186/1556-276X-9-569

    Article  CAS  Google Scholar 

  28. J. Xu, S. Quan, Z. Zou, P. Guo, Y. Lu, H. Yan, Y. Luo, Color-tunable photoluminescence from in-doped CdS nanowires. Chem. Phys. Lett. 652, 216–219 (2016). https://doi.org/10.1016/j.cplett.2016.04.068

    Article  CAS  Google Scholar 

  29. L. Kong, X. Xiao, J. Yu, D. Mao, G. Lu, Color-tunable luminescence properties of Sm3+/Dy3+ co-doped NaLa(MoO4)2 phosphors and their energy transfer mechanism. J. Mater. Sci. 52, 6310–6321 (2017). https://doi.org/10.1007/s10853-017-0863-6

    Article  CAS  Google Scholar 

  30. G. Li, Y. Wang, H. Guo, J. Liu, D. Liu, P. Feng, Electronic structure, photoluminescence and phosphorescence properties in BaSc2Si3O10:Eu2+, RE3+ (RE3+ = Nd3+, Tm3+, Dy3+ and Tb3+) phosphors. J. Lumin. 192, 98–104 (2017). https://doi.org/10.1016/j.jlumin.2017.06.037

    Article  CAS  Google Scholar 

  31. M. Peng, Z. Pei, G. Hong, Q. Su, The reduction of Eu3+ to Eu2+ in BaMgSiO4: Eu prepared in air and the luminescence of BaMgSiO4: Eu2+ phosphor. J. Mater. Chem. 13, 1202–1205 (2003). https://doi.org/10.1039/b211624c

    Article  CAS  Google Scholar 

  32. C. Suryanaraya, M.G. Norton, X-ray Diffraction a Practical Approach (Springer Science+Business Media, New York, 1998). https://doi.org/10.1007/978-1-4899-0148-4

  33. A.L. Patterson, The scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  34. D.Y. Medina-Velazquez, U. Caldiño, A. Morales-Ramirez, J. Reyes-Miranda, R.E. Lopez, R. Escudero, R. Ruiz-Guerrero, M.F. Morales Perez, Synthesis of luminescent terbium-thenoyltriflouroacetone MOF nanorods for green laser application. Opt. Mater. (Amst) 87, 3–10 (2019). https://doi.org/10.1016/j.optmat.2018.08.021

    Article  CAS  Google Scholar 

  35. Z. Wang, Q. Zhang, M. Rong, H. Tan, Q. Wang, Q. Zhou, G. Chen, Synthesis and luminescent properties of Sr3Al2O5Cl2: Eu2+, Dy3+ rod-like nanocrystals. Chem. Phys. Lett. 658, 324–327 (2016). https://doi.org/10.1016/j.cplett.2016.06.076

    Article  CAS  Google Scholar 

  36. D. Modi, M. Srinivas, D. Tawde, K.V.R. Murthy, V. Verma, N. Patel, Hydrothermal synthesis and photoluminescence properties of cerium-doped cadmium tungstate nanophosphor. J. Exp. Nanosci. 10, 777–786 (2015). https://doi.org/10.1080/17458080.2014.899714

    Article  CAS  Google Scholar 

  37. K. Kishore, M. Singh, C. Singh, S.K. Upadhyaya, Spectroscopic and thermo-gravimetric analysis of terbium myristate spectroscopic and thermo-gravimetric analysis of terbium myristate. J. Biol. Chem. Chron. 3, 28–33 (2018)

    Google Scholar 

  38. M. Ma, C. Li, D. Shu, C. Wang, P. Xi, Synthesis and characterization of bright green terbium coordination complex derived from 1,4-bis(carbonylmethyl)terephthalate: structure and luminescence properties. Spectrochim. Acta A 190, 68–75 (2018). https://doi.org/10.1016/j.saa.2017.09.009

    Article  CAS  Google Scholar 

  39. S. Matrix, F.J. Kadhim, W.A.A. Twej, T.S. Mahdi, A.J. Majeed, Spectroscopic investigation of terbium β -diketonate complex linked to silica spectroscopic investigation of terbium β -diketonate complex linked to silica sol-gel. Matrix (2015). https://doi.org/10.1016/spc.2015.09.01

    Article  Google Scholar 

  40. X. Ye, Y. Fang, C. Liao, Y. Yang, G. Deng, W. Zhuang, Re-determination of the crystal structure of Ca2Y8Si6O26 and study on the luminescent properties of Ca2Y8Si6O26:Tb3+. J. Rare Earths 28, 269–271 (2010). https://doi.org/10.1016/S1002-0721(10)60326-2

    Article  Google Scholar 

  41. L. Dong, L. Zhang, Y. Jia, B. Shao, W. Lü, S. Zhao, H. You, Synthesis, luminescence and application of novel europium, cerium and terbium-doped apatite phosphors. CrystEngComm 21, 6226–6237 (2019). https://doi.org/10.1039/c9ce01105f

    Article  CAS  Google Scholar 

  42. C. Duan, Z. Zhang, S. Rösler, S. Rösler, A. Delsing, J. Zhao, H.T. Hintzen, Preparation, characterization, and photoluminescence properties of Tb3+-, Ce3+-, and Ce3+/Tb3+-activated RE2Si4N6C (RE = Lu, Y, and Gd) phosphors. Chem. Mater. 23, 1851–1861 (2011). https://doi.org/10.1021/cm103495j

    Article  CAS  Google Scholar 

  43. G. Blasse, Energy transfer in oxidic phosphors. Phys. Lett. A 28, 444–445 (1968). https://doi.org/10.1016/0375-9601(68)90486-6

    Article  CAS  Google Scholar 

  44. G.H. Lee, S. Kang, Studies in crystal structure and luminescence properties of Eu3-doped metal tungstate phosphors for white LEDs. J. Lumin. 131, 2606–2611 (2011). https://doi.org/10.1016/j.jlumin.2011.06.026

    Article  CAS  Google Scholar 

  45. P.D. Preto, V. Balraj, B.S. Dhabekar, S. Watanabe, T.K.G. Rao, N.F. Cano, Synthesis, thermoluminescence, defect center and dosimetric characteristics of LiF:Mg, Cu, P, Si phosphor. Appl. Radiat. Isot. 130, 21–28 (2017). https://doi.org/10.1016/j.apradiso.2017.08.022

    Article  CAS  Google Scholar 

  46. X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, D. Chen, ≈2 μm Luminescence properties and nonradiative processes of Tm3+in silicate glass. J. Lumin. 150, 40–45 (2014). https://doi.org/10.1016/j.jlumin.2014.01.030

    Article  CAS  Google Scholar 

  47. Z. Xia, J. Zhou, Z. Mao, Near UV-pumped green-emitting Na3(Y, Sc)Si3O9:Eu2+ phosphor for white-emitting diodes. J. Mater. Chem. C 1, 5917–5924 (2013). https://doi.org/10.1039/c3tc30897a

    Article  CAS  Google Scholar 

  48. Y. Xiao, W. Xiao, L. Zhang, Z. Hao, G.H. Pan, Y. Yang, X. Zhang, J. Zhang, A highly efficient and thermally stable green phosphor (Lu2SrAl4SiO12:Ce3+) for full-spectrum white LEDs. J. Mater. Chem. C 6, 12159–12163 (2018). https://doi.org/10.1039/c8tc04101f

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhana Agrawal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, P.K., Agrawal, S. Structural and photoluminescence behavior of a blue–green-emitting Y6Ba4(SiO4)6F2:xTb3+ fluorapatite phosphor. J Mater Sci: Mater Electron 31, 18692–18705 (2020). https://doi.org/10.1007/s10854-020-04411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04411-6

Navigation