Skip to main content
Log in

Investigation of methane adsorption onto metal–organic frameworks under subcritical condition employing adsorption isotherm models

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Analysis of methane (CH4) adsorption isotherms for metal–organic framework (MOF) adsorbents in the subcritical regions has been reported in this article. In this study, virgin MIL-101-(Cr) MOF, which is doped with alkali ions, are used to comprehend the influence of alkali dopants on CH4 sorption behaviour. MIL-101-(Cr) MOF and its derivatives with alkali ion dopants were prepared by the benign hydrothermal synthesis route, which was characterized by powder X-ray diffraction method. The equilibrium uptakes of CH4 under the subcritical condition were evaluated by fitting the isotherms with Langmuir, Toth and Dubinin–Astakohv adsorption models to determine the adsorption parameters. The adsorption parameters were correlated with the surface-induced heterogeneity, which can be attributed to the introduction of alkali dopants in the MOF structure. It is apparent from the analysis that the isosteric heat of adsorption diminishes with increasing alkali dopant size, while the induced surface structural heterogeneity increases with increasing alkali dopant size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Konstas K, Osl T, Yang Y, Batten M, Burke N J, Hill A R et al 2012 J. Mater. Chem. 22 698

    Article  Google Scholar 

  2. Thamsiriroj T, Smyth H and Murphy J D 2011 Renew. Sustain. Energy. Rev. 15 642

    Article  Google Scholar 

  3. He Y, Zhou W, Qian G and Chen B 2014 Chem. Soc. Rev. 43 5657

    Article  CAS  Google Scholar 

  4. Waller M G, Williams E D, Matteson S W and Trabold T A 2014 Appl. Energy 127 55

    Article  Google Scholar 

  5. Łaciak M, Sztekler K, Szurlej A and Włodek T 2019 IOP Conf. Ser. Earth Environ. Sci. 214 012138

    Article  Google Scholar 

  6. Li J R, Kuppler R J and Zhou H C 2009 Chem. Soc. Rev. 38 1477

    Article  CAS  Google Scholar 

  7. Menon V C and Komarneni S 1998 J. Porous Mater. 5 43

    Article  CAS  Google Scholar 

  8. Ruthven D M 1984 Principles of adsorption and adsorption processes (New York: Wiley) p 82

    Google Scholar 

  9. Alcañiz-Monge J, Lozano-Castelló D, Cazorla-Amorós D and Linares-Solano A 2009 Micropor. Mesopor. Mater. 124 110

    Article  Google Scholar 

  10. Peng Y, Krungleviciute V, Eryazici I, Hupp J T, Farha O K and Yildirim T 2013 J. Am. Chem. Soc. 135 11887

    Article  CAS  Google Scholar 

  11. Duren T, Sarkisov L, Yaghi O M and Snurr R Q 2004 Langmuir 20 2683

    Article  Google Scholar 

  12. Cabrera-Munguia D A, León-Campos M I, Claudio-Rizo J A, Solís-Casados D A, Flores-Guia T E and Cano-Salazar L F 2021 Bull. Mater. Sci. 44 245

    Article  CAS  Google Scholar 

  13. Mason J A, Veenstra M and Long J R 2014 Chem. Sci. 5 22

    Article  Google Scholar 

  14. Wegrzyn J and Gurevich M 1996 Appl. Energy 55 71

    Article  CAS  Google Scholar 

  15. Hong D Y, Hwang Y K, Serre C, Ferey G and Chang J S 2009 Adv. Funct. Mater. 19 1537

    Article  CAS  Google Scholar 

  16. Ferey G 2008 Chem. Soc. Rev. 37 191

    Article  CAS  Google Scholar 

  17. Loiseaua T and Ferey G 2007 J. Fluor. Chem. 128 413

    Article  Google Scholar 

  18. Kayal S, Sun B and Chakraborty A 2015 Energy 91 772

    Article  CAS  Google Scholar 

  19. Aijaz A, Karkamkar A, Choi Y J, Tsumori N, Ronnebro E, Autrey T et al 2012 J. Am. Chem. Soc. 134 13929

    Article  Google Scholar 

  20. Sun B, Chakraborty A, Ali S M and Kayal S 2016 Appl. Therm. Eng. 93 1175

    Article  CAS  Google Scholar 

  21. Sircar S 2017 Adsorption 23 121

    Article  CAS  Google Scholar 

  22. Loh W S, Rahman K A, Chakraborty A, Saha B B, Choo Y S, Khoo B C et al 2010 J. Chem. Eng. Data 55 2840

    Article  CAS  Google Scholar 

  23. Rahman K A, Loh W S, Yanagi H, Chakraborty A, Saha B B, Chun W G et al 2010 J. Chem. Eng. Data 55 4961

    Article  CAS  Google Scholar 

  24. He Y, Zhou W, Krishna R and Chen B 2012 Chem. Commun. 48 11813

    Article  CAS  Google Scholar 

  25. Dubinin M M 1960 Chem. Rev. 60 235

    Article  CAS  Google Scholar 

  26. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S et al 2005 Science 309 2040

    Article  Google Scholar 

  27. Abdulsalam J, Mulopo J, Bada S O and Oboirien B 2020 ACS Omega 5 32530

    Article  CAS  Google Scholar 

  28. Aristov Y 2014 Appl. Therm. Eng. 72 166

    Article  Google Scholar 

  29. Jagiello J 2004 Carbon 42 1227

    Article  CAS  Google Scholar 

  30. Amankwah K A G and Schwarz J A 1995 Carbon 33 1313

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre for Sustainable Technology and Product Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibnath Kayal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Kayal, S. Investigation of methane adsorption onto metal–organic frameworks under subcritical condition employing adsorption isotherm models. Bull Mater Sci 45, 96 (2022). https://doi.org/10.1007/s12034-022-02685-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02685-6

Keywords

Navigation