Skip to main content
Log in

Theoretical study of the magnetic and magnetocaloric properties of La0.7Sr0.3Mn0.95Fe0.05O3 perovskite manganites at low and high applied magnetic fields: Landau theory and phenomenological models

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the magnetic and magnetocaloric properties of a recently elaborated La0.7Sr0.3Mn0.95Fe0.05O3 perovskite manganites have been modelled using different theoretical methods based on Landau theory and phenomenological models. The calculations were done by exploring the measurement data of magnetization vs. temperature at various low and high magnetic field values. The results confirmed that this compound has a magnetic phase transition of the second-order type from ferromagnetic to paramagnetic states at Curie temperature near the room temperature. The theoretical values of the magnetic entropy change (\(- \Delta S_{{\text{M}}}\)) are estimated in low and high applied magnetic fields from these methods. The analysis of our obtained results of the relative cooling power indicated that this compound is a potential candidate material for magnetic refrigeration technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Goldstein E A, Raman A P and Fan S 2017 Nat. Energy 2 1

    Article  Google Scholar 

  2. Franco V, Blázquez J S, Ipus J J, Law J Y, Moreno-Ramírez L M and Conde A 2018 Prog. Mater. Sci. 93 112

    Article  Google Scholar 

  3. Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545

    Article  CAS  Google Scholar 

  4. Lee J S 2004 Phys. Stat. Sol. (b) 241 1765

    Article  CAS  Google Scholar 

  5. Phan M H and Yu S C 2007 J. Magn. Magn. Mater. 308 325

    Article  CAS  Google Scholar 

  6. Hcini S, Boudard M, Zemni S and Oumezzine M 2014 Ceram. Int. 40 16041

    Article  CAS  Google Scholar 

  7. Wali M, Skini R, Khlifi M, Dhahri E and Hlil E K 2015 Dalton Trans. 44 12796

    Article  CAS  Google Scholar 

  8. Yadav P A, Deshmukh A V, Adhi K P, Kale B B, Basavaih N and Patil S I 2013 J. Magn. Magn. Mater. 328 86

    Article  CAS  Google Scholar 

  9. Deshmukh A V, Patil S I, Bhagat S M, Sagdeo P R, Choudhary R J and Phase D M 2009 J. Phys. D: Appl. Phys. 42 185410

    Article  Google Scholar 

  10. Dhahri I, Ellouze M, Mnasri T, Hllil E K and Jontania R B 2020 J. Mater. Sci.: Mater. Electron. 31 12493

    CAS  Google Scholar 

  11. Ezaami A, Sellami-Jmal E, Cheikhrouhou-Koubaa W, Cheikhrouhou A and Hlil E K 2017 J. Phys. Chem. Solids 109 109

    Article  CAS  Google Scholar 

  12. Amaral J S, Das S and Amaral V S 2011 in J C M Pirajá (ed) The mean-field theory in the study of ferromagnets and the magnetocaloric effect, thermodynamics-systems in equilibrium and non-equilibrium (InTech) 173

  13. Hamad M A 2014 Phase Transit. 87 460

    Article  CAS  Google Scholar 

  14. Hamad M A 2012 Phase Transit. 85 106

    Article  CAS  Google Scholar 

  15. Franco V, Blazquez J S and Conde A 2006 Appl. Phys. Lett. 89 222512

    Article  Google Scholar 

  16. Cowley R A 1980 Adv. Phys. 29 1

    Article  CAS  Google Scholar 

  17. Alzahrani B, Hsini M, Hsini S, Dhahri A and Bouazizi M L 2020 Appl. Phys. A 126 1

    Article  Google Scholar 

  18. Hsini M, Hcini S and Zemni S 2018 J. Magn. Magn. Mater. 466 368

    Article  CAS  Google Scholar 

  19. Krumhansl J A 1992 Solid State Commun. 84 251

    Article  CAS  Google Scholar 

  20. Amaral J S, Reis M S, Amaral V S, Mendonça T M, Araújo J P, Sáb M A et al 2005 J. Magn. Magn. Mater. 290 686

    Article  Google Scholar 

  21. Amaral V S and Amaral J S 2004 J. Magn. Magn. Mater. 272 2104

    Article  Google Scholar 

  22. Bourouina M, Krichene A, Chniba Boudjada N, Khitouni M and Boujelben W 2017 Ceram. Int. 43 8139

    Article  CAS  Google Scholar 

  23. Hsini M, Hcini S and Zemni S 2019 Eur. Phys. J. Plus 134 588

    Article  CAS  Google Scholar 

  24. Cardy J 1996 (eds) Scaling and renormalization in statistical physics (Cambridge University Press)

  25. Dong Q Y, Zhang H W, Shen J L, Sun J R and Shen B G 2007 J. Magn. Magn. Mater 319 56

    Article  CAS  Google Scholar 

  26. Gschneidner K A and Pecharsky V K Jr 2000 Annu. Rev. Mater. Sci. 30 387

    Article  CAS  Google Scholar 

  27. Rostamnejadi A, Venkatesan M, Kameli P, Salamati H and Coey J M D 2011 J. Magn. Magn. Mater. 323 2214

    Article  CAS  Google Scholar 

  28. Noumi M, Marouani Y, Dhahri R, Dhahri E, Hlil E K and Costa B F O 2021 J. Alloys Compd. 866 157541

    Article  CAS  Google Scholar 

  29. Banerjee B K 1964 Phys. Lett. 12 16

    Article  Google Scholar 

  30. Dong Q Y, Zhang H W, Sun J R, Shen B G and Franco V 2008 J. Appl. Phys. 103 116101

    Article  Google Scholar 

  31. Makni-Chakroun J, Omrani H, Cheikhrouhou-Koubaa W, Koubaa M and Cheikhrouhou A 2016 J. Supercond. Nov. Magn. 29 1681

    Article  CAS  Google Scholar 

  32. Ezaami A, Sellami-Jmal E, Cheikhrouhou-Koubaa W, Koubaa M and Cheikhrouhou A 2017 J. Supercond. Nov. Magn. 30 911

    Article  CAS  Google Scholar 

  33. Datta S, Guha S, Panda S K and Kar M 2020 Phys. Stat. Sol. (b) 257 2000123

    Article  CAS  Google Scholar 

  34. Hamad M A 2013 J. Supercond. Nov. Magn. 26 2981

    Article  CAS  Google Scholar 

  35. Zemni S, Baazaoui M, Dhahri Ja Vincent H and Oumezzine M 2009 Mater. Lett. 63 489

    Article  CAS  Google Scholar 

  36. Kallel N, Kallel S, Hagaza A and Oumezzine M 2009 Phys. B: Condens. Matter 404 285

    Article  CAS  Google Scholar 

  37. Zhang X X, Wen G H, Wang F W, Wang W H, Yu C H and Wu G H 2000 Appl. Phys. Lett. 77 3072

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AEM is grateful to DGRSDT and MHESR of Algeria for financial support under the PRFU research project No. B00L02UN130120180011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkrim Elhasnaïne Merad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahimi, A., Merad, A.E., Ellouze, M. et al. Theoretical study of the magnetic and magnetocaloric properties of La0.7Sr0.3Mn0.95Fe0.05O3 perovskite manganites at low and high applied magnetic fields: Landau theory and phenomenological models. Bull Mater Sci 45, 98 (2022). https://doi.org/10.1007/s12034-022-02677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02677-6

Keywords

Navigation