Skip to main content
Log in

Colossal dielectric properties of (Zn0.5Ta0.5)0.02Ti0.98O2/PVDF composites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, (Zn0.5Ta0.5)0.02Ti0.98O2/polyvinylidene fluoride (PVDF) composites were fabricated and their dielectric properties were analysed up to 1 MHz. The ceramic filler material was synthesized by the solid-state ceramic route and the phase purity was confirmed by X-ray diffraction. Composites with different volume fractions were prepared by finely dispersing the filler in the PVDF matrix followed by compression moulding. The PVDF phase was confirmed by Fourier transform infrared spectroscopy. Dielectric properties (dielectric constant and loss tangent) up to 1 MHz were studied using an impedance analyser. A dielectric constant of 63 along with an acceptable loss of 0.028 was obtained for a filler volume of 50% at 1 MHz. Also, a dielectric constant of 78 with a loss of 0.14 was obtained at 30% filler loading at 1 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Fan Y, Wang Z, Huan Y, Wei T and Wang X 2020 J. Adv. Ceram. 9 349

    Article  CAS  Google Scholar 

  2. Ribeiro C, Clarisse C, Carlos M C and Daniela M 2018 Nat. Protoc. 13 681

    Article  CAS  Google Scholar 

  3. Zhang Y, Wang W, Zhang J and Ni Y 2020 Polym. Test. 91 106801

    Article  CAS  Google Scholar 

  4. Guillemet-Fritsch S, Valdez-Nava Z, Tenailleau C, Lebey T, Durand B and Chane-Ching J Y 2008 Adv. Mater. 20 551

    Article  CAS  Google Scholar 

  5. Wang Y, Jie W, Yang C, Wei X and Hao J 2019 Adv. Funct. Mater. 29 1

    CAS  Google Scholar 

  6. Adams T B, Sinclair D C and West A R 2006 Phys. Rev. B—Condens. Matter Mater. Phys. 73 1

    Google Scholar 

  7. Dong W, Wanbiao H and Adam B 2015 ACS Appl. Mater. Interfaces 7 25321

    Article  CAS  Google Scholar 

  8. Guo B, Liu P, Cui X and Song Y 2018 Ceram. Int. 44 12137

    Article  CAS  Google Scholar 

  9. Wang Z, Chen H, Wang T, Xiao Y, Nian W and Fan J 2018 J. Eur. Ceram. Soc. 38 3847

    Article  CAS  Google Scholar 

  10. Hu W, Yun L and Ray L W 2013 Nat. Mater. 12 821

    Article  CAS  Google Scholar 

  11. Li J, Fei L and Yongyong Z 2014 J. Appl. Phys. 116 2

    Google Scholar 

  12. Fan J, Yang T and Cao Z 2020 J. Asian Ceram. Soc. 8 1188

    Article  Google Scholar 

  13. Martins P, Serrado N J and Hungerford G 2009 Phys. Lett. Sect. A Gen. At. Solid State Phys. 373 177

    CAS  Google Scholar 

  14. Paleo A J, Martínez-Boubeta C, Balcells L, Costa C M, Sencadas V and Lanceros-Mendez S 2011 Nanoscale Res. Lett. 6 8

    Article  Google Scholar 

  15. Yang H C, Wu Q Y, Liang H Q, Wan L S and Xu Z K 2013 J. Polym. Sci. Part B Polym. Phys. 51 1438

    Article  CAS  Google Scholar 

  16. Bormashenko Y, Pogreb R, Stanevsky O and Bormashenko E 2004 Polym. Test. 23 791

    Article  CAS  Google Scholar 

  17. Lanceros-Méndez S, Mano J F, Costa A M and Schmidt V H 2001 J. Macromol. Sci. Part B: Physics 40 517

    Article  Google Scholar 

  18. Kobayashi M, Tashiro K and Tadokoro H 1975 Macromolecules 8 158

    Article  CAS  Google Scholar 

  19. Lunkenheimer P, Fichtl R, Ebbinghaus S G and Loidl A 2004 Phys. Rev. B Condens. Matter Mater. Phys. 70 1

    Article  Google Scholar 

  20. Stanguennec M L and Elliott S R 1994 Solid State Ionics 73 199

    Article  Google Scholar 

  21. Elliott S R 1994 Solid State Ionics 70–71 27

    Article  Google Scholar 

  22. Schmidt R, Martin C S and Neil C H 2012 J. Eur. Ceram. Soc. 32 3313

    Article  CAS  Google Scholar 

  23. Bouaamlat H, Nasr H and Najat B 2020 Adv. Mater. Sci. Eng. 2020 8s

    Article  Google Scholar 

  24. Nisa V S, Rajesh S, Murali K P, Priyadarsini V, Potty S N and Ratheesh R 2008 Compos. Sci. Technol. 68 106

    Article  CAS  Google Scholar 

  25. Chen G, Wenlong Y and Jiaqi L 2017 J. Mater. Chem. 5 8135

    Article  CAS  Google Scholar 

  26. Su Y L, Sun C, Zhang W Q and Huang H 2013 J. Mater. Sci. 48 8147

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the HOD, MED, NIT Calicut, and the Director, CMET Thrissur, for the support extended to carry out the various phases of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Dileep.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dileep, C., Muhammed Hunize, C.V. & Murali, K.P. Colossal dielectric properties of (Zn0.5Ta0.5)0.02Ti0.98O2/PVDF composites. Bull Mater Sci 45, 80 (2022). https://doi.org/10.1007/s12034-022-02670-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02670-z

Keywords

Navigation