Skip to main content

Advertisement

Log in

Influence of high detonation pressure on the structural, microstructural and mechanical behaviour of IN718 superalloy: numeric simulation vis-à-vis experimental explosive shock processing

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Micro-sized IN718 superalloy powder with an average particle size of 70 μm has been explosively shock-processed with high pressure of the order of 41.3 GPa. A hydrocode, AUTODYNE-2D, with Eulerian mesh is used to simulate and to compute the detonation pressure, particle velocity and shock pressure on the superalloy in the reactive zone. The grazing shock pressure at different regions in the compaction system has been calculated and compared with the experimental work. Axisymmetric cylindrical compaction geometry has been used for the shock-loading of IN718 superalloy. The shock pressure at different points was calculated experimentally by pin-oscillography with the help of electrical as well as fibre optical probes. Wide-angle X-ray diffraction study indicates the intact crystalline FCC structure within the shock-processed specimen having dominating \(\gamma^{ }\)[Ni-Cr-Fe] and strengthening \(\gamma^{\prime}\)[Ni3(Ti,Al)] phases. Laser diffraction particle size measurement points towards the reduced particle size of the shock-loaded specimen. The Line-broadening Williamson-Hall method shows a very small amount of locked-in microstrain of the order of 0.23%. Energy-dispersive analysis using X-ray examination shows no evidence of any chemical segregation within the compacts. Field-emission scanning electron microscopy shows satisfactory sub-structural strengthening and desired morphology at different regions in the fractographs of the compacted specimen without melting of the core of the specimen. Micro-indentation testing at variable loads of 0.98, 1.96 and 4.9 N shows a good hardness of the order of 642 Hv. The monolith cut-along the consolidation axes show tensile and compressive strengths of the order of 1.126 and 1.04 kN mm–2, respectively. Uniform crack/void-free compacts have been obtained with a density close to 99.2% of the theoretical value with negligible porosity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Wahll M J, Maykuth D J and Hucek H J 2007 Handbook of Superalloys International alloy composition and designation series 1st edn. (USA: Battalle Press)

    Google Scholar 

  2. Donalchie M J and Donalchie S J 2002 Superalloys: a technical guide 2nd edn. (USA: ASM International)

    Book  Google Scholar 

  3. Davis J R 2000 Nickel, cobalt and their alloys 1st edn. (USA: ASM International)

    Google Scholar 

  4. El-Bagoury N 2016 Int. J. Eng. Sci. Res. Technol. 5 108

    CAS  Google Scholar 

  5. Kracke A 2010 Superalloys: the most successful alloy system of modern times-past, present and future Seventh Inter. Symp. Superalloys 718 and Derivatives (TMS)

  6. Yan S, Wang Y, Wang Q, Zhang C, Chen D and Cui G 2019 Materials 12 3336

    Article  CAS  Google Scholar 

  7. Mostafa A, Rubio I P, Brailovski V, Jahazi M and Medraj M 2017 Metals 7 196

    Article  CAS  Google Scholar 

  8. Shivakumar K, Bhat T B and Ramakrishnan P J 1998 Mater. Process. Technol. 73 268

    Article  Google Scholar 

  9. Bhadeshia H K D H 2003 Nickel based superalloys (UK: University of Cambridge)

    Google Scholar 

  10. Nagayama K 1993 Shock wave interaction in solid materials (Japan: Springer) p195

    Book  Google Scholar 

  11. Sharma A D, Sharma A K and Thakur N 2019 J. Met. Mater. Res. 2 26

    Article  Google Scholar 

  12. Zohoor M and Mehdipoor A 2009 J. Mater. Process. Technol. 209 4201

    Article  CAS  Google Scholar 

  13. Sivakumar K and Hokamoto K 2000 J. Mater. Sci. 35 5823

    Article  Google Scholar 

  14. Zukas J A 2000 Introduction to hydrocodes 1st edn. (USA: Elsevier)

    Google Scholar 

  15. ANSYS AUTODYN: Explicit software for nonlinear dynamics 2005 (SPH user manual)

  16. Nellis W J 2001 Dynamic experiments: an overview University of California, Lawrence Livermore National Laboratory

    Google Scholar 

  17. Häggblad H A 1993 Modeling and simulations of metal powder pressing PhD Thesis (Luleå University of Technology)

  18. Wehrenberg C 2012 Phase transformations in shock compacted magnetic materials PhD Thesis (Georgia Institute of Technology)

  19. Sharma A D 2014 Shock wave synthesis of newer materials of Ni-based superalloys and their characterization PhD Thesis (Himachal Pradesh University-India)

  20. Meyers M A 1994 Dynamic behavior of materials (University of California-JWS)

  21. Batsanov S S 1994 Effect of explosions on materials 1st edn. (Springer-Verlag)

  22. Chen T, Hampikian J M and Thadhani N N 1999 Acta Mater. 47 2567

    Article  CAS  Google Scholar 

  23. Meyers M A, Benson D J and Olevsky E A 1999 Acta Mater. 47 2089

    Article  CAS  Google Scholar 

  24. Shang S S, Benson D J and Meyers M A 1992 J. de. Phys. 4 521

    Google Scholar 

  25. Rice M H, McQueen R G and Walsh J W 1958 Solid State Physics 1st edn. (Elsevier) p 1

  26. Wei P, Lang H, Liu T and Xia D 2017 Sensors 17 2552

    Article  CAS  Google Scholar 

  27. Kabwe E J 2018 Rock Mech. Geotech. Eng. 10 523

    Google Scholar 

  28. PegueroII J C 2019 Measurement of shock and detonation 886 propagation PETN thin films 1st edn. (New Mexico: Institute of Mining and Technology)

    Google Scholar 

  29. Sharma A D, Sharma A K and Thakur N 2013 Appl. Phys. A 111 783

    Article  CAS  Google Scholar 

  30. Mandal A, Jensen B J, Aslam T D and Everson A J 2018 Dynamic compaction of nickel powder examined by X-ray phase contrast imaging, AIP Conf. Proc. 1979 110010

  31. Sharma A D, Sharma A K and Thakur N 2011 Shock wave processing of metal powers and their microstructural characterization AIP Conf. Proc. 119 1393

    Google Scholar 

  32. Jinoop A N, Subbu S K and Kumar R A 2018 Int. J. Add. Sub. Mater. Manuf. 2 1

    Google Scholar 

  33. Bridges D, Xu R and Hu A 2019 Mater. Des. 174 107784

  34. Sanchez S, Smith P, Xu Z, Gaspard G, Hyde C J, Wits W W et al 2021 Int. J. Mach. Tool. Manuf. 165 103729

  35. Slamaa C and Abdellaoui M 2000 J. Alloys Comp. 306 277

    Article  Google Scholar 

  36. Sharma A D, Sharma A K and Thakur N 2012 Phil. Mag. 92 2108

    Article  CAS  Google Scholar 

  37. Zheng Z H A O, Xiao-jie K, Gang T A O and Chang-Xing D U 2009 Trans. Nonfer. Met. Soc. China 19 626

    Article  CAS  Google Scholar 

  38. Zhao Z, Li X J, Yan H H and Liu D H 2008 Combust. Explos. Shock Waves 44 119

    Article  CAS  Google Scholar 

  39. Sharma A D, Sharma A K and Thakur N 2015 Shock wave loading of nickel based superalloy and microstructural features of the compacts IOP Conf. Series: Mater. Sci. Eng. 73 012059

  40. Meyers M A, Jarmakani H, Bringa E M and Remington B A 2009 Dislocations in shock compression and release (USA: Elsevier)

    Google Scholar 

  41. Williamson G K and Hall W H 1953 Acta Metall. 1 22

    Article  CAS  Google Scholar 

  42. Armstrong R W, Ammon H L, Du Z Y, Elban W L and Zhang X J 1993 Mat. Res. Soc. Symp. Proc. 296 227

    Article  CAS  Google Scholar 

  43. Thadhani N N 1994 J. Appl. Phys. 76 714

    Article  Google Scholar 

  44. Khan M, Mostafa A O, Aljarrah M, Essadiqi E and Medraj M 2014 J. Mater. 657647 1

    Google Scholar 

  45. Shi X, Duan S, Yang W, Guo H and Guo J 2018 Materials 11 2398

    Article  CAS  Google Scholar 

  46. Stogner J, Terock M and Glatzel M 2015 Adv. Eng. Mater. 17 1099

    Article  CAS  Google Scholar 

  47. Sharma A D, Sharma A K and Thakur N 2016 Metall. Mater. Trans. B 47 2479

    Article  CAS  Google Scholar 

  48. Odabasi A, Unlu N, Guller G and Eruslu M N 2010 Metall. Mater. Trans. A 41A 2357

    Article  CAS  Google Scholar 

  49. Salas W, Alba-Baena N G and Murr L E 2007 Metall. Mater. Trans. A 38 2928

    Article  CAS  Google Scholar 

  50. Sharma A D, Sharma A K and Thakur N 2014 J. Alloys Comp. 597 175

    Article  CAS  Google Scholar 

  51. Morris D G 1986 J. Mater. Sci. 21 1111

    Article  CAS  Google Scholar 

  52. Alba-Baena N G, Salas W and Murr L E 2008 Mater. Charact. 59 1152

    Article  CAS  Google Scholar 

  53. Mukhtarova1 K S, Shakhov R V, Smirnov V V, Mukhtarov S K 2019 IOP Conf. Series: Mater. Sci. Eng. 672 012049

  54. Bukaemskii A A and Fedorova E N 2008 Combust. Explos. Shock Waves 44 717

    Article  Google Scholar 

  55. Zin Z Q, Thadhani N N, McGill M, Ding Y, Wang Z L, Chen M et al 2005 J. Mater. Res. 20 599

    Article  CAS  Google Scholar 

  56. Tsao T, Yeh A, Kuo C, Kakehi K, Murakami H, Yeh J et al 2017 Sci. Rep. 12658 1

    Google Scholar 

  57. Bhujangra T, Veiga F, Suárez A, Iriondo E and Mata F G 2020 Crystals 10 689

    Article  CAS  Google Scholar 

  58. Page N W, Killen P D and Jon D H 1990 Mater. Sci. Eng. A 130 231

    Article  Google Scholar 

  59. Yong C K, Gibbons G J, Wong C C and West G 2020 Metals 10 1576

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Defence Research and Development Organization (DRDO), India, for Grant-in-aid Project No. ERIP/ER/0703665/M/01/1044. Special thanks to the University Grants Commission (UGC-New Delhi), India, for providing Research Fellowship No. F.4-1/2006 (BSR)/11-08/2008. Thanks also to USIC facility at H.P. University, Shimla and SAIF/CIL Laboratory at Panjab University, Chandigarh, and the entire trial team. Distinctive thanks to Madan K Sharma, Yugal K Yoshi and Rajendra S Bisht for their necessary assistance and guidance in carrying out the field experiments and numeric simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A D Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A.D., Sharma, A.K. & Thakur, N. Influence of high detonation pressure on the structural, microstructural and mechanical behaviour of IN718 superalloy: numeric simulation vis-à-vis experimental explosive shock processing. Bull Mater Sci 45, 70 (2022). https://doi.org/10.1007/s12034-021-02646-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02646-5

Keywords

Navigation