Skip to main content

Advertisement

Log in

Structural and optical analyses of sol–gel synthesized hafnium-doped barium calcium titanate

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Materials that integrate more than one useful property in single- and multi-phase structures are known as multifunctional materials. Most of them fall in the category of ABO3 perovskite type and in recent times, these materials have attracted considerable attention from engineers and scientists around the globe for electronic devices of the future. Among the perovskites, barium titanate-based structures have emerged at the top for modern research in advanced materials. In this study, polycrystalline Ba0.85Ca0.15Ti(1–x)HfxO3, x = 0.00, 0.05, 0.10, 0.15, materials were synthesized by sol–gel combustion technique and their optical properties were studied. X-ray diffraction (XRD) confirmed that, Ba0.85Ca0.15Ti(1–x)HfxO3 crystallized at 1000°C with tetragonal symmetry having P4mm space group. In addition to XRD, the presence of the tetragonal phase was confirmed using Raman spectroscopy. The crystallite sizes computed using Scherrer equation were found to range from 15 to 18 nm. Fourier transform infrared spectroscopy analysis showed a significant peak at 565 cm−1, confirming the formation of the metal oxide-based ceramics. Ultraviolet-Visible-near-IR spectroscopy of Ba0.85Ca0.15Ti(1–x)HfxO3 showed a slight increase in bandgap energy with the increase of Hf4+. Photoluminescence spectra confirmed the composition of three colours (blue, green and red) with the intensity of emission increasing with Hf4+ doping.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Scott J F 2007 Appl. Mod. Ferroelectr. 315 954

    CAS  Google Scholar 

  2. Huan Y, Wang X, Fang J and Li L 2014 J. Eur. Ceram. Soc. 34 1445

    Article  Google Scholar 

  3. Upadhyay R H, Argekar A P and Deshmukh R R 2014 Bull. Mater. Sci. 37 481

    Article  CAS  Google Scholar 

  4. Xu Y (ed) 1991 Ferroelectric materials and their applications (Amsterdam: Springer)

    Google Scholar 

  5. Nalwa H S (ed) 1999 Handbook of low and high dielectric constant materials and their applications (New York: Academic Press)

    Google Scholar 

  6. Kishi H, Mizuno Y and Chazono H 2003 Jpn. J. Appl. Phys. 42 1

    Article  CAS  Google Scholar 

  7. Xu J, Menesklou W and Ivers T E 2004 J. Eur. Ceram. Soc. 24 1735

    Article  CAS  Google Scholar 

  8. Lee B I 1999 J. Electroceram. 3 53

    Article  CAS  Google Scholar 

  9. Zheng R K, Wang J, Tang X G, Wang Y, Chan H L W and Choy C L 2005 J. Appl. Phys. 98 084108

    Article  Google Scholar 

  10. Wang L, Liu L, Xue D, Kang H and Liu C 2007 J. Alloys Compd. 440 78

    Article  CAS  Google Scholar 

  11. Park J S, Lee Y H, Kim K B and Kim Y 2012 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 284 44

    Article  CAS  Google Scholar 

  12. Khort A A and Podbolotov K B 2016 Ceram. Int. 42 15343

    Article  CAS  Google Scholar 

  13. Khedhri M H, Abdelmoula N, Khemakhem H, Douali R and Dubois F 2019 Appl. Phys. A 125 193

    Article  CAS  Google Scholar 

  14. Zhao G, Chen L, Tang Y, He L, Long B, Nie Z and Chen H 2015 Mater. Sci. Forum 809 136

    Google Scholar 

  15. Zhang M S, Yin Z, Chen Q, Zhang W and Chen W 2001 Solid State Commun. 119 659

    Article  CAS  Google Scholar 

  16. Hernandez M G, Chadeyron G, Boyer D, Murillo A G, Romo F C and Mahiou R 2013 Nano-Micro Lett. 5 57

    Article  Google Scholar 

  17. Yang Y, Hao H, Zhang L, Chen C, Luo Z, Liu Z et al 2018 Ceram. Int. 44 11109

    Article  CAS  Google Scholar 

  18. Jiang X, Hao H, Yang Y, Zhou E, Zhang S, Wei P et al 2021 J. Materiomics 7 295

    Article  Google Scholar 

  19. Salhi A, Sayouri S, Alimoussa A and Kadira L 2019 Mater. Today Proc. 13 1248

    Article  CAS  Google Scholar 

  20. Khedhri M H, Abdelmoula N, Khemakhem H, Douali R and Dubois F 2019 Appl. Phys. A Mater. Sci. Process. 125 193

    Article  CAS  Google Scholar 

  21. Cheng X and Shen M 2007 Mater. Res. Bull. 42 1662

    Article  CAS  Google Scholar 

  22. Rached A, Wederni M A, Khirouni K, Alaya S, Martín-Palma R J and Dhahri J 2021 Mater. Chem. Phys. 267 124600

    Article  CAS  Google Scholar 

  23. Liu W and Ren X 2009 Phys. Rev. Lett. 103 257602

    Article  Google Scholar 

  24. Motta F V, Marques A P A, Espinosa J W M, Pizani P S, Longo E and Varela J A 2010 Curr. Appl. Phys. 10 16

    Article  Google Scholar 

  25. Barik P and Kundu T K 2013 Nanosyst. Phys. Chem. Math. 4 269

    CAS  Google Scholar 

  26. Cernea M, Vasilescu C A, Secu M, Aldica G, Surdu A and Ganea P 2016 J. Mater. Sci. Mater. Electron. 27 11371

    Article  CAS  Google Scholar 

  27. Petrovic M M V, Bobic J D, Ramoska T, Banys J and Stojanovic B D 2011 Mater. Charact. 62 1000

    Article  CAS  Google Scholar 

  28. Maso N, Beltran H, Cordoncillo E, Flores A A, Escribano P, Sinclair D C et al 2016 J. Mater. Chem. 16 3114

    Article  Google Scholar 

  29. Sarkar B, Chakrabarti K, Das K and De S K 2012 Phys. D. Appl. Phys. 45 505304

    Article  Google Scholar 

  30. McQuarrie M and Behnke F W 1954 J. Am. Ceram. Soc. 37 539

    Article  CAS  Google Scholar 

  31. Maiti T, Guo R and Bhalla A S 2008 J. Am. Ceram. Soc. 91 1769

    Article  CAS  Google Scholar 

  32. Hao J, Bai W, Li W and Zhai J 2012 J. Am. Ceram. Soc. 95 1998

    Article  CAS  Google Scholar 

  33. Tian Y, Chao X, Wei L, Liang P and Yang Z 2013 J. Appl. Phys. 113 184107

    Article  Google Scholar 

  34. Loreto A D, Machado R, Frattini A and Stachiotti M G 2017 J. Mater. Sci. Mater. Electron. 28 588

    Article  Google Scholar 

  35. Anwar S, Sagdeo P R and Lalla N P 2006 Solid State Commun. 138 331

    Article  CAS  Google Scholar 

  36. Tian H Y, Wang Y, Miao J, Chan H L W and Choy C L 2007 J. Alloys Compd. 431 197

    Article  CAS  Google Scholar 

  37. Garbarz-Glos B, Piekarczyk W, Smeltere I, Smiga W and Antonova M 2012 Ferroelectrics 436 87

    Article  CAS  Google Scholar 

  38. Halder S, Schneller T, Waser R and Majumder S B 2008 Thin Solid Films 516 4970

    Article  CAS  Google Scholar 

  39. Zhao C, Wang H, Xiong J and Wu J 2016 Dalton Trans. 45 6466

    Article  CAS  Google Scholar 

  40. Dai Z, Li D, Xie J, Liu W, Ge S, Zhang J et al 2019 Funct. Mater. Lett. 12 1950070

    Article  CAS  Google Scholar 

  41. Tsai C C, Chao W H, Chu S Y, Hong C S, Weng C M and Su H H 2016 AIP Adv. 6 125024

    Article  Google Scholar 

  42. Zhao C, Wu B, Thong H C and Wu J 2018 J. Eur. Ceram. Soc. 38 5411

    Article  CAS  Google Scholar 

  43. Cullity B D and Stock S R (eds) 2014 Elements of X-ray diffraction (Upper Saddle River: Pearson Education Limited)

    Google Scholar 

  44. Sun Z, Pu Y and Zhang C 2015 J. Mater. Sci. Mater. Electron. 26 1275

    Article  CAS  Google Scholar 

  45. Batoo K M, Raslan E H, Yang Y, Adil S F, Khan M, Imran A et al 2019 AIP Adv. 9 055202

    Article  Google Scholar 

  46. Batoo K M, Kumar G, Yang Y, Al-Douri Y, Singh M, Jotania R B et al 2017 J. Alloys Compd. 726 179

    Article  CAS  Google Scholar 

  47. Takuya H 2013 J. Ceram. Soc. 121 156

    Article  Google Scholar 

  48. Richerson D W and Lee W E (eds) 1992 Modern ceramic engineering: properties, processing, and use in design (New York: Taylor & Francis Group)

    Google Scholar 

  49. Cernea M, Secu M, Radu R, Ganea P, Vasile A S, Surdu V A, Trusca R et al 2021 J. Alloys Compd. 878 160380

    Article  CAS  Google Scholar 

  50. Verma R, Chauhan A, Batoo K M, Hadi M, Raslan E H, Kumar R et al 2021 J. Alloys Compd. 869 159520

    Article  CAS  Google Scholar 

  51. Sati A, Mishra V, Kumar A, Warshi M K, Sagdeo A, Kumar R et al 2019 J. Mater. Sci. Mater. Electron. 30 9498

    Article  CAS  Google Scholar 

  52. Sood A K, Chandrabhas N, Muthu D V S and Jayaraman A 1995 Phys. Rev. B 51 8892

    Article  CAS  Google Scholar 

  53. Pasha U M, Zheng H, Thakur O P, Feteira A, Whittle K R, Sinclair D C et al 2007 Appl. Phys. Lett. 91 062908

    Article  Google Scholar 

  54. Khalid M B, Ritesh V, Ankush C, Rajesh K, Muhammad H, Omar M A et al 2021 J. Alloys Compd. 883 160836

    Article  Google Scholar 

  55. Sati A, Pokhriyal P, Kumar A, Anwar S, Sagdeo A, Lalla N P et al 2021 J. Phys. Condens. Matter 33 165403

    Article  CAS  Google Scholar 

  56. Sun D, Jin X, Liu H, Zhu J, Zhu Y and Zhu Y 2007 Ferroelectrics 355 145

    Article  CAS  Google Scholar 

  57. Perry C H and Hall D B 1965 Phys. Rev. Lett. 15 700

    Article  CAS  Google Scholar 

  58. Abdessalem M B, Aydi A, Abdelmoula N, Sassi Z and Khemakhem H 2017 Appl. Phys. A 123 583

    Article  Google Scholar 

  59. Puli V S, Kumar A, Chrisey D B, Tomozawa M, Scott J F and Katiyar R S 2011 J. Phys. D Appl. Phys. 44 395403

    Article  Google Scholar 

  60. Binhyeeniyi N, Sukvisut P, Thanachayanont C and Muensit S 2010 Mater. Lett. 64 305

    Article  Google Scholar 

  61. Zak A K, Majid W H A, Abrishami M E and Yousefi R 2011 Solid State Sci. 13 251

    Article  Google Scholar 

  62. Rached A, Wederni M A, Khirouni K, Alaya S, Palma R J M and Dhahri J 2021 Mater. Chem. Phys. 267 124600

    Article  CAS  Google Scholar 

  63. Jin X, Sun D, Zhang M, Zhu Y and Qian J 2009 J. Electroceram. 22 285

    Article  CAS  Google Scholar 

  64. Disalvo E A and Frias M A 2013 Langmuir 29 6969

    Article  CAS  Google Scholar 

  65. Singh A P, Kumar S and Thirumal M 2019 ACS Omega 4 12175

    Article  CAS  Google Scholar 

  66. Zhang M S, Yu J, Chen W and Yin Z 2000 Prog. Cryst. Growth Charact. Mater. 40 33

    Article  CAS  Google Scholar 

  67. Cho W S and Hamada W 1998 J. Alloys Compd. 268 78

    Article  CAS  Google Scholar 

  68. Lu S G, Xu Z K, Chen H, Mak C L, Wong K H, Li K F et al 2006 J. Appl. Phys. 99 064103

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Central Laboratory for Instrumentation and Facilitation (CLIF), University of Kerala, Thiruvananthapuram, India and Sophisticated test and Instrumentation Centre (STIC), Cochin University of Science and Technology, Kochi, India, for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Bindhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, J., Bindhu, B., Prabu, M. et al. Structural and optical analyses of sol–gel synthesized hafnium-doped barium calcium titanate. Bull Mater Sci 45, 50 (2022). https://doi.org/10.1007/s12034-021-02633-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02633-w

Keywords

Navigation