Skip to main content

Advertisement

Log in

Physical properties of the semiconducting delafossite AgNiO2

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The delafossite AgNiO2 was prepared by hydrothermal route. The X-ray diffraction shows a single phase indexed in a rhombohedral unit cell (\({\text{R}}\overline{3}m\)) with a particle size of 12 nm. The Raman spectroscopy confirmed the single phase. The thermal analysis shows a stability up to 290°C. The forbidden band (0.87 eV), determined from the diffuse reflectance, is assigned to the transition: Ag+: 4d hybridized (dz2–s) – O2–: 2p orbital. The magnetization M(H), measured at different temperatures, exhibits a low hysteresis at 200°C with a weak remanence of 495 Oe. It increases with the applied field to saturate at ~5 kOe, suggesting a paramagnetism of AgNiO2 nanocrystallites with a low spin (LS) Ni3+ configuration. The thermal variation of the electrical conductivity indicates a semiconducting behaviour with an activation energy (Ea) of 0.013 eV. The high conductivity (σ300K = 1.8 Ω–1 cm–1) is in conformity with the non-cooperative effect of the Jahn–Teller Ni3+ ion. The thermo-power shows p-type behaviour coming from oxygen intercalation in the layered lattice. The conduction occurs by polaron hopping between mixed valences Ag2+/+ and increases with raising temperature, in agreement with a degenerate semiconductor. The valence band, determined from the capacitance measurements in KOH (0.1 M) electrolyte, is made up of Ag+: 4d orbital, located at – 4.52 eV below vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bassaid S, Chaib M, Omeiri S, Bouguelia A and Trari M 2009 J. Photochem. Photobiol. A 201 62

    Article  CAS  Google Scholar 

  2. Ketir W, Bouguelia A and Trari M 2008 J. Hazard Mater. 158 257

    Article  CAS  Google Scholar 

  3. El-Bassuony A A H and Abdelsalam H K 2017 J. Alloys Compd. 726 1106

    Article  CAS  Google Scholar 

  4. Crespo C T 2018 Sol. Energy 163 162

    Article  Google Scholar 

  5. Dong H, Li Z, Xu X, Ding Z, Wu L, Wang X et al 2009 Appl. Catal. B 89 551

    Article  CAS  Google Scholar 

  6. Azmat Ali M, Khan A, Haider Khan S, Ouahrani T and Bin Omran S 2015 Mater. Sci. Semicond. Process 38 57

    Article  CAS  Google Scholar 

  7. Koriche N, Bouguelia A, Aider A and Trari M 2005 Int. J. Hydrog. Energy 30 693

    Article  CAS  Google Scholar 

  8. John M, Heuss-Abichler S, Park S H, Ullrich A, Benka G, Petersen N et al 2016 J. Solid State Chem. 233 390

    Article  CAS  Google Scholar 

  9. Bessekhouad Y, Trari M and Doumerc J P 2003 Int. J. Hydrog. Energy 28 43

    Article  CAS  Google Scholar 

  10. El Ataoui K, Doumerc J P, Ammar A, Grenier J C, Fournès L, Wattiaux A et al 2005 Solid State Sci. 7 710

    Article  Google Scholar 

  11. Daniel U, Anamaria D, Sebarchievicia L and La Miclau M 2017 Energy Procedia 112 497

    Article  CAS  Google Scholar 

  12. Beekman M, Salvador J, Shi X, Nolas G S and Yang J 2010 J. Alloys Compd. 489 336

    Article  CAS  Google Scholar 

  13. Shin Y J, Doumerc J P, Dordor P, Delmas C, Pouchard M and Hagenmuller P 1993 J. Solid State Chem. 107 303

    Article  CAS  Google Scholar 

  14. Wichainchai A, Dordor P, Doumerc J P, Marquestaut E, Pouchard M, Hagenmuller P et al 1988 J. Solid State Chem. 74 126

    Article  CAS  Google Scholar 

  15. Nagarajan R, Duan N, Jayaraj M K, Li J, Vanaja K A, Yokochi A et al 2001 Inter. J. Inorg. Mater. 3 265

    Article  CAS  Google Scholar 

  16. Sheets W C, Mugnier E, Barnabe A, Marks T J and Poeppelmeier K R 2006 Chem. Mater. 18 7

    Article  CAS  Google Scholar 

  17. Sanchez R D, Torresi R M, Rettori C, Oseroff S and Fisk Z 1995 Electrochim. Acta 40 209

    Article  CAS  Google Scholar 

  18. Trari M, Doumerc J P, Pouchard M, Hagenmuller P, Elazhari M, Ammar A et al 1994 Ann. Chim. Fr. 19 521

    CAS  Google Scholar 

  19. Shin Y J, Doumerc J P, Pouchard M and Hagenmuller P 1993 Mat. Res. Bull. 28 159

    Article  CAS  Google Scholar 

  20. Mahroua O, Alili B, Ammari A, Ballal B, Bradai D and Trari M 2019 Ceram. Int. 45 10511

    Article  CAS  Google Scholar 

  21. Sörgel T and Jansen M 2007 J. Solid State Chem. 180 8

    Article  Google Scholar 

  22. Meng Y S 2012 Ph.D thesis (University of California, San Diego)

  23. Shannon R D 1976 Acta. Crystallogr. A 32 751

    Article  Google Scholar 

  24. Kang J S, Lee S S, Kim G, Lee H J, Song H K, Shin Y J et al 2007 Phys. Rev. B 76 195–122

    Google Scholar 

  25. Gou G, Grinberg I, Rappe A M and Rondinelli J M 2011 Phys. Rev. B 84 144101

    Article  Google Scholar 

  26. Chung J H, Lim J H, Shin Y J, Kang J S, Jaiswal-Nagar D and Kim K H 2008 Phys. Rev. B 78 214

    Article  Google Scholar 

  27. Nabiyouni G, Jafari Fesharaki M, Mozafari M and Amighian J 2012 Chin. Phys. Lett. 27 126401

    Article  Google Scholar 

  28. Li Q, Kartikowati C W, Horie S, Ogi T, Iwaki T and Okuyama K 2017 Sci. Rep. 7 9894

    Article  Google Scholar 

  29. Hewstonand T A and Chamberland B L 1987 J. Phys. Chem. Solid 48 97

    Article  Google Scholar 

  30. Weast Robert C 1997 Handbook of chemistry and physics, 58th edn. (Boca Raton: CRC Press)

    Google Scholar 

  31. Benreguia N, Barnabé A and Trari M 2016 Mater. Sci. Semicond. Process 56 14

    Article  CAS  Google Scholar 

  32. Mott N F and Davis E A 1979 Electronic processes in non-crystalline materials 2nd edn. (Oxford: Clarendon Press)

    Google Scholar 

  33. Rogers D B, Shannon R D, Prewitt C T and Gilson J L 1971 Inorg. Chem. 10 713

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Abderrahmane Younès for his technical assistance in the magnetic properties and Dr Mehdi Brahim for the Rietveld analysis of the XRD. This work was financially supported by the Faculty of Chemistry (Algiers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Mahroua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagtache, R., Mahroua, O. & Trari, M. Physical properties of the semiconducting delafossite AgNiO2. Bull Mater Sci 45, 36 (2022). https://doi.org/10.1007/s12034-021-02618-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02618-9

Keywords

Navigation