Skip to main content
Log in

Review on the deposition, structure and properties of high entropy oxide films: current and future perspectives

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

High entropy oxides (HEOs) have captivated significant concentration due to their unique properties. Manipulation of configurational entropy is the main key for extraordinary behaviours, leading to unprecedented material design and innovations. Substantial research has been conducted on HEO bulk systems, but films are still in the cradle stage. Inspired by the ground-breaking results of HEOs, a novel form of films named high entropy oxides films (HEOFs) are being fabricated. The focus in this review is on the fabrication process, structure and properties of HEOFs with attention to their strengths and liabilities. Iconic investigations from recent articles are highlighted. The first overview is provided on how HEOFs are fabricated and interesting phenomena such as the impact of processing parameters, the role of dopants on the film are discussed. This review also highlights the structural–microstructural appearance and physical properties, concluding with future possibilities and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Copyright 2018, American Physical Society; (bd) surface morphology and (e and f) cross-section SEM image of (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O film during the variation in temperature and pressure. Reprinted with permission from Reference [29], Copyright 2021, Elsevier.

Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ye Y F, Wang Q, Lu J, Liu C T and Yang Y 2016 Mater. Today 19 349

    Article  CAS  Google Scholar 

  2. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T et al 2004 Adv. Eng. Mater. 6 299

    Article  CAS  Google Scholar 

  3. Tsai M H and Yeh J W 2014 Mater. Res. Lett. 2 107

    Article  Google Scholar 

  4. Rost C M, Sachet E, Borman T, Moballegh A, Dickey E C, Hou D et al 2015 Nat. Commun. 6 8485

    Article  CAS  Google Scholar 

  5. Sarkar A, Wang Q, Schiele A, Chellali M R, Bhattacharya S S, Wang D et al 2019 Adv. Mater. 31 1806236

    Article  Google Scholar 

  6. Musicó B L, Gilbert D, Ward T Z, Page K, George E, Yan J et al 2020 APL Mater. 8 040912

    Article  Google Scholar 

  7. Salian A and Mandal S 2021 Crit. Rev. Solid State Mater. Sci. 1

  8. Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K et al 2014 Prog. Mater. Sci. 61 1

    Article  Google Scholar 

  9. Murty B S, Yeh J W, Ranganathan S and Bhattacharjee P P 2019 (eds) High-entropy alloys (Netherlands: Elsevier)

  10. Lei Z, Liu X, Wang H, Wu Y, Jiang S and Lu Z 2019 Scr. Mater. 165 164

    Article  CAS  Google Scholar 

  11. Lin M I, Tsai M H, Shen W J and Yeh J W 2010 Thin Solid Films 518 2732

    Article  CAS  Google Scholar 

  12. Tsau C H, Yang Y C, Lee C C, Wu L Y and Huang H J 2012 Proc. Eng. 36 246

    Article  CAS  Google Scholar 

  13. Tsau C H, Hwang Z Y and Chen S K 2015 Adv. Mater. Sci. Eng. 2015 353140

    Article  Google Scholar 

  14. Rost C M 2016 PhD thesis (Raleigh, North Carolina: North Carolina State University)

  15. Meisenheimer P B, Kratofil T J and Heron J T 2017 Sci. Rep. 7 13344

    Article  CAS  Google Scholar 

  16. Sharma Y, Musico B L, Gao X, Hua C, May A, Herklotz A et al 2018 Phys. Rev. Mater. 2 060404

    Article  CAS  Google Scholar 

  17. Kotsonis G N, Rost C M, Harris D T and Maria J P 2018 MRS Commun. 8 1371

    Article  CAS  Google Scholar 

  18. Kotsonis G N, Meisenheimer P B, Miao L, Roth J, Wang B, Shafer P et al 2020 Phys. Rev. Mater. 4 100401

    Article  CAS  Google Scholar 

  19. Sharma Y, Zheng Q, Mazza A R, Skoropata E, Heitmann T, Gai Z et al 2020 Phys. Rev. Mater. 4 014404

    Article  CAS  Google Scholar 

  20. Mazza A R, Skoropata E, Sharma Y, Lapano J, Heitmann T W, Musico B L et al 2021 arXiv:2104.05552

  21. Witte R, Sarkar A, Kruk R, Eggert B, Brand R A, Wende H et al 2019 Phys. Rev. Mater. 3 034406

    Article  CAS  Google Scholar 

  22. Zhou L, Li F, Liu J X, Hu Q, Bao W, Wu Y et al 2020 J. Eur. Ceram. Soc. 40 5731

    Article  CAS  Google Scholar 

  23. Kirnbauer A, Spadt C, Koller C M, Kolozsvári S and Mayrhofer P H 2019 Vacuum 168 108850

    Article  CAS  Google Scholar 

  24. Yang Z M, Zhang K, Qiu N, Zhang H B, Wang Y and Chen J 2019 Chin. Phys. B 28 046201

    Article  CAS  Google Scholar 

  25. Bi L, Li X, Li Z, Hu Y, Zhang J, Wang Q et al 2020 Surf. Coat. Technol. 402 126326

    Article  CAS  Google Scholar 

  26. Ahn M, Park Y, Lee S H, Chae S, Lee J, Heron J T et al 2021 Adv. Electron. Mater. 7 2001258

    Article  CAS  Google Scholar 

  27. Wang T H, Kuo C T, Chung P H, Liu C I, Lu Y Y, Lee Y T et al 2021 J. Mater. Chem. C 9 4961

    Article  CAS  Google Scholar 

  28. Patel R K, Ojha S K, Kumar S, Saha A, Mandal P, Freeland J W et al 2020 Appl. Phys. Lett. 116 071601

    Article  CAS  Google Scholar 

  29. Jacobson V, Diercks D, To B, Zakutayev A and Brennecka G 2021 J. Eur. Ceram. Soc. 41 2617

    Article  CAS  Google Scholar 

  30. Chopra K L, Paulson P D and Dutta V 2004 Prog. Photovolt. Res. Appl. 12 69

    Article  CAS  Google Scholar 

  31. Eckertová L 1977 (ed) Physics of thin films (New York: Plenum Press)

  32. Nikitenkov N 2017 (ed) Modern technologies for creating the thin-film systems and coatings (Rijeka Croatia: Intechopen)

  33. Frey H 2015 (ed) Handbook of thin-film technology (Berlin Heidelberg: Springer) p 3

  34. Ohring M 1994 Proc. SPIE 2114 Laser-induced damage in optical materials 1993 p 624

  35. Brahlek M, Mazza A R, Pitike K C, Skoropata E, Lapano J, Eres G et al 2020 Phys. Rev. Mater. 4 054407

    Article  CAS  Google Scholar 

  36. Rák Z, Maria J P and Brenner D W 2018 Mater. Lett. 217 300

    Article  Google Scholar 

  37. Ndione P F, Shi Y, Stevanovic V, Lany S, Zakutayev A, Parilla P A et al 2014 Adv. Funct. Mater. 24 610

    Article  CAS  Google Scholar 

  38. Zhang W, Mazza A R, Skoropata E, Mukherjee D, Musico B, Zhang J et al 2020 ACS Nano 14 13030

    Article  Google Scholar 

  39. Zhang J C, Sun S, Yang Z M, Qiu N and Wang Y 2020 Chin. Phys. B 29 66104

    Article  CAS  Google Scholar 

  40. Nguyen T X, Su Y H, Hattrick Simpers J, Joress H, Nagata T, Chang K S et al 2020 ACS Comb. Sci. 22 858

    Article  CAS  Google Scholar 

  41. Miao L, Kotsonis G, Maria J P and Alem N 2020 Microsc. Microanal. 26 1196

    Article  Google Scholar 

  42. Lowndes D H, Geohegan D B, Puretzky A A, Norton D P and Rouleau C M 1996 Science 273 898

    Article  CAS  Google Scholar 

  43. Mattox D M 2010 (ed) Handbook of physical vapor deposition (PVD) processing (USA: William Andrew)

  44. Tudose I V, Comanescu F, Pascariu P, Bucur S, Rusen L, Iacomi F et al 2019 (eds) Functional nanostructured interfaces for environmental and biomedical applications (Elsevier) p26

  45. Eason R 2006 (ed) Pulsed laser deposition of thin films: applications-led growth of functional materials (New Jersey: John Wiley & Sons)

  46. Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doǧan S et al 2005 J. Appl. Phys. 98 1

    Article  Google Scholar 

  47. Almeida J B 1989 (ed) Materials modification by high-fluence ion beams (The Netherlands: Springer) p92

  48. Kelly P J and Arnell R D 2000 Vacuum 56 159

    Article  CAS  Google Scholar 

  49. Safi I 2000 Surf. Coat. Technol. 127 203

    Article  CAS  Google Scholar 

  50. Waits R K 1978 J. Vac. Sci. Technol. 15 179

    Article  CAS  Google Scholar 

  51. Lundin D, Minea T and Gudmundsson J T 2019 (ed) High power impulse magnetron sputtering: fundamentals, technologies, challenges and applications (Elsevier) p48

  52. Ellmer K 2000 J. Phys. D: Appl. Phys. 33 R17

    Article  CAS  Google Scholar 

  53. Pawlowski L 2008 (ed) The science and engineering of thermal spray coatings (England: John Wiley & Sons)

  54. Fauchais P, Vardelle A and Dussoubs B 2001 J. Therm. Spray Technol. 10 44

    Article  CAS  Google Scholar 

  55. Fauchais P 2004 J. Phys. D: Appl. Phys. 37 R86

    Article  CAS  Google Scholar 

  56. Lange F F 1996 Science 273 903

    Article  CAS  Google Scholar 

  57. Shannon R D 1976 Acta Crystallogr. Sect. A 32 751

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST) (ECR/2015/000339), Government of India

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumen Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salian, A., Mandal, S. Review on the deposition, structure and properties of high entropy oxide films: current and future perspectives. Bull Mater Sci 45, 49 (2022). https://doi.org/10.1007/s12034-021-02617-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02617-w

Keywords

Navigation