Skip to main content
Log in

Investigation of structural, mechanical and optoelectronic properties of cubic Cd1−xyZnxHgySe quaternary alloys through first-principle calculations

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Structural, mechanical and optoelectronic features of zinc-blende Cd1−xyZnxHgySe quaternary alloys as well as allied binary compounds and ternary alloys have been investigated through first-principle calculations. Computed elastic stiffness constants ensure that each specimen is mechanically stable, ductile, elastically anisotropic and compressible. The covalent bonding plays a superior role over ionic bonding in each specimen. The phonon dispersion spectra ensure that each binary compound is dynamically stable, while each ternary or quaternary alloy exhibits dynamical instability. Each semiconductor alloy exhibits a direct (Γ–Γ) bandgap. Electrons possess lower effective mass compared to holes. Electrons excited from the Se-4p state of valence band to Zn-5s, Cd-6s and Hg-7s states of conduction band contribute peaks in dielectric function spectra of the considered specimens. Computed oscillator strength of quaternary alloys reveals availability of adequate number of electrons in respective conduction bands. On the basis of computed optoelectronic properties, the alloys would be suitable to fabricate near-UV and UV optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Medelung O (ed) 1982 Landolt Bornstein: numerical data and functional relationship in science and technology (Springer)

    Google Scholar 

  2. Von Truchseβ M, Pfeuffer-Jeschke A, Becker C R, Landwehr G and Batke E 2000 Phys. Rev. B 61 1666

    Google Scholar 

  3. Szuszkiewi W 1979 Phys. Status Solidi (b) 91 361

    Google Scholar 

  4. Gawlik K U, Kipp L, Skibowski M, Orłowski N and Manzke R 1997 Phys. Rev. Lett. 78 3165

    CAS  Google Scholar 

  5. Wang J and Isshiki M 2006 Wide-bandgap II–VI semiconductors: growth and properties, Springer handbook of electronic and photonic materials (Berlin: Springer) p 325

    Google Scholar 

  6. Hasse M A, Qui J, De Puydt J M and Cheng H 1991 Appl. Phys. Lett. 59 1272

    Google Scholar 

  7. Tamargo M C, Brasil M J S P, Nahory R E, Martin R J, Weaver A L and Gilchrist H L 1991 Semicond. Sci. Technol. 6 A8

    CAS  Google Scholar 

  8. Shieh F, Saunders A E and Korgel B A 2005 J. Phys. Chem. B 109 8538

    CAS  Google Scholar 

  9. Peng Z A and Peng X G 2001 J. Am. Chem. Soc. 123 183

    CAS  Google Scholar 

  10. Xi L F, Chua K H, Zhao Y Y, Zhang J, Xiong Q H and Lam Y M 2012 RSC Adv. 2 5243

    CAS  Google Scholar 

  11. Wissmann H, Tran-Anh T, Rogaschewski S and von Ortenberg M 1990 J. Cryst. Growth 201/202 619

    Google Scholar 

  12. Kuno M, Higginson K A, Bonevich J E, Qadri S B, Yousuf M and Mattoussi H 2002 Proc. SPIE 4808 146

    CAS  Google Scholar 

  13. Esmaeili-Zare M, Salavati-Niasari M and Sobhani A 2012 Ultrason. Sonochem. 19 1079

    CAS  Google Scholar 

  14. Bazarganipour M, Sadri M, Davar F and Salavati-Niasari M 2011 Polyhedron 30 1103

    CAS  Google Scholar 

  15. Medelung O (ed) 1996 Landolt Bornstein: semiconductors basic data in science & technology (Berlin: Springer)

    Google Scholar 

  16. Adachi S 2009 Properties of semiconductor alloys (West Sussex: Wiley)

    Google Scholar 

  17. Lee B H 1970 J. Appl. Phys. 41 2988

    CAS  Google Scholar 

  18. Lehoczky A, Nelson D A and Whitsett C R 1969 Phys. Rev. 188 1069

    CAS  Google Scholar 

  19. Ford P J, Miller A J, Saunders G A, Yourtçu Y K, Furdyna J K and Jaczynski M 1982 J. Phys. C: Sol. Stat. Phys. 15 657

    CAS  Google Scholar 

  20. Berlincourt D, Jafee H and Shlozawa L R 1963 Phys. Rev. 129 1009

    CAS  Google Scholar 

  21. Cline C F, Dunegan H L and Henderson G W 1967 J. Appl. Phys. 38 1944

    CAS  Google Scholar 

  22. Phillips J C 1970 Rev. Mod. Phys. 42 317

    CAS  Google Scholar 

  23. Kumazaki K 1976 Phys. Status Solidi A 33 615

    CAS  Google Scholar 

  24. Strehlow W H and Cook E L 1973 J. Phys. Chem. Ref. Data 2 163

    CAS  Google Scholar 

  25. Einfeldt S, Goschenhofer F, Becker C R and Landwehr G 1995 Phys. Rev. B 51 4915

    CAS  Google Scholar 

  26. Manabe A, Mitsuishi A and Yoshinaga H 1967 Jpn. J. Appl. Phys. 6 593

    CAS  Google Scholar 

  27. Chen X J, Mintz A, Hu J S, Hua X L, Zinck J and Goddard W A I I I 1995 J. Vac. Sci. Technol. B 13 1715

    CAS  Google Scholar 

  28. Heyd J, Peralta J E and Scuseria G E 2005 J. Chem. Phys. 123 174101

    Google Scholar 

  29. Deligoz E, Colakoglu K and Ciftci Y 2006 Physica B 373 124

    CAS  Google Scholar 

  30. Ouendadji S, Ghemid S, Meradji H and El Haj Hassan F 2011 Comp. Matr. Sci. 50 1460

    CAS  Google Scholar 

  31. Guo L, Zhang S, Feng W, Hu G and Li W 2013 J. Alloys Comp. 579 583

    CAS  Google Scholar 

  32. Sharma S, Verma A S, Sarkar B K, Bhandari R and Jindal V K 2011 AIP Conf. Proc. 1393 229

    CAS  Google Scholar 

  33. Rabani E 2002 J. Chem. Phys. 116 258

    CAS  Google Scholar 

  34. Kamran S, Chen K and Chen L 2008 Phys. Rev. B 77 094109

    Google Scholar 

  35. Ullah N, Murtaza G, Khenata R, Wong K M and Alahmed Z A 2014 Phase Transit. 87 571

    CAS  Google Scholar 

  36. Al Shafaay B, El Haj Hassan F and Korek M 2014 Comp. Mater. Sci. 83 107

    CAS  Google Scholar 

  37. Duz I, Erdem I, Ozdemir Kart S and Kuzucu V 2016 Arch. Mater. Sci. Eng. 79 5

    Google Scholar 

  38. El Haj Hassan F, Al Shafaay B, Meradji H, Ghemid S, Belkhir H and Korek M 2011 Phys. Scr. 84 065601

    Google Scholar 

  39. Khenata R, Bouhemadou A, Sahnoun M, Reshak A H, Baltache H and Rabah M 2006 Comp. Mater. Sci. 38 29

    CAS  Google Scholar 

  40. Casali R A and Christensen N E 1998 Sol. Stat. Commun. 108 793

    CAS  Google Scholar 

  41. Bilal M, Shafiq M, Ahmad I and Khan I 2014 J. Semicond. 35 0720011

    Google Scholar 

  42. Varshney D, Shriya S and Khenata R 2012 Mater. Chem. Phys. 135 365

    CAS  Google Scholar 

  43. Fleszar A and Hankew, 2005 Phys. Rev. B 71 045207

    Google Scholar 

  44. Zakharov O, Rubio A, Blasé X, Cohen M L and Loui S G 1994 Phys. Rev. B 50 10780

    CAS  Google Scholar 

  45. Boutaiba F, Zaoui A and Ferhat M 2009 Superlattices Microst. 46 823

    CAS  Google Scholar 

  46. Benkert A, Schumacher C and Brunner K 2007 Appl. Phys. Lett. 90 162105

    Google Scholar 

  47. Tournie E, Ongaretto C, Laugt M and Faurie J P 1998 Appl. Phys. Lett. 72 217

    CAS  Google Scholar 

  48. Rafipoor M, Dupont D, Tornatzky H, Tessier M D, Maultzsch J, Tessier M D et al 2018 Chem. Mater. 30 4393

    CAS  Google Scholar 

  49. Yeh C-W, Chen G-H, Ho S-J and Chen H-S 2019 Nano Mater. https://doi.org/10.1021/acsanm.9b01213

    Article  Google Scholar 

  50. Sparing L M, Mintairov A M, Hodak J H, Martini I B, Hartland G V, Bindley U et al 2000 J. Appl. Phys. 87 3063

    CAS  Google Scholar 

  51. Wu J D, Huang Y S, Li B S, Shen A, Tamargo M C and Tiong K K 2010 J. Appl. Phys. 108 123105

    Google Scholar 

  52. Hara K, Machimura H, Usui M, Munekata H, Kukimoto H and Yoshino J 1995 Appl. Phys. Lett. 66 3337

    CAS  Google Scholar 

  53. Mycielski A, Kossutt J, Dobrowolskat M and Dobrowolskit W 1982 J. Phys. C: Sol. Stat. Phys. 15 3293

    CAS  Google Scholar 

  54. Sarkar P and Springborg M 2003 Phys. Rev. B 68 235409

    Google Scholar 

  55. Goswami B, Pal S, Sarkar P, Seifert G and Springborg M 2006 Phys. Rev. B 73 2053124

    Google Scholar 

  56. Goswami B, Pal S and Sarkar P 2007 Phys. Rev. B 76 045323

    Google Scholar 

  57. Saha S, Pal S, Sarkar P, Rosa A L and Frauenheim T 2012 J. Comput. Chem. 33 1165

    CAS  Google Scholar 

  58. Kaledin A L, Kong D, Wu K, Lian T and Musaev D G 2018 J. Phys. Chem. C 122 18742

    CAS  Google Scholar 

  59. Kar M, Sarkar R, Pal S and Sarkar P 2020 Phys. Rev. B 101 195305

    CAS  Google Scholar 

  60. Benchikh K, Abid H and Benchehima M 2017 Mater. Sci. Pol., https://doi.org/10.1515/msp-2017-0005

    Article  Google Scholar 

  61. Debbarma M, Sarkar U, Debnath B, Ghosh D, Chanda S, Bhattacharjee R and Chattopadhyaya S 2018 Curr. Appl. Phys. 18 698

    Google Scholar 

  62. Murtaza G, Ullah N, Rauf A, Khenata R, Omran S B, Sajjad M et al 2015 Mater. Sci. Semicond. Process. 30 462

    CAS  Google Scholar 

  63. Debbarma M, Sarkar U, Debnath B, Ghosh D, Chanda S, Bhattacharjee R et al 2018 J. Alloys Comp. 748 446

    CAS  Google Scholar 

  64. Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864

    Google Scholar 

  65. Kohn W and Sham L J 1965 Phys. Rev. 140 A1133

    Google Scholar 

  66. Andersen O K 1975 Phys. Rev. B 42 3063

    Google Scholar 

  67. Blaha P, Schwarz K, Madsen G H, Kbasnicka D and Luitz J 2001 in Schwarz K (ed.) FP-LAPW+lo program for calculating crystal properties, 2nd edn. Vienna University of Technology, Vienna

    Google Scholar 

  68. Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106

    Google Scholar 

  69. Jamal M, Asadabadi S J, Ahmed I and Aliabad H A R 2014 Comp. Mater. Sci. 95 592

    CAS  Google Scholar 

  70. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    CAS  Google Scholar 

  71. Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401

    Google Scholar 

  72. Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943

    CAS  Google Scholar 

  73. Anisimov V I, Solovyev I V, Korotin M A, Czyyk M T and Sawatzky G A 1993 Phys. Rev. B 48 16929

    CAS  Google Scholar 

  74. Hubbard J 1963 Proc. Roy. Soc. Lond. A 276 238

    Google Scholar 

  75. Kokalj A 2003 Comp. Mat. Sci. 28 155

    CAS  Google Scholar 

  76. Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244

    CAS  Google Scholar 

  77. Vegard L 1921 Z. Phys. 5 17

    CAS  Google Scholar 

  78. Pettifor D G 1992 Mater. Sci. Technol. 8 345

    CAS  Google Scholar 

  79. Li S, Li S and Ju X 2017 J. Alloys Comp. 695 2916

    CAS  Google Scholar 

  80. Potter R Y 1957 J. Phys. Chem. Solids 3 223

    CAS  Google Scholar 

  81. Huang W and Yang L 2015 Can. J. Phys. 93 1

    CAS  Google Scholar 

  82. Liu B, Wang J Y, Li F Z and Zhou Y C 2010 Acta Mater. 58 4369

    CAS  Google Scholar 

  83. Fine M E, Brown L D and Marcus H L 1984 Scr. Metall. 18 951

    CAS  Google Scholar 

  84. Fox M 2001 Optical properties of solids (UK: Oxford University Press)

    Google Scholar 

  85. Penn D R 1962 Phys. Rev. 128 2093

    CAS  Google Scholar 

Download references

Acknowledgements

The DST-INSPIRE-SRF [Ref. No DST/INSPIRE/03/2017/002068] of the DST, Government of India, is gratefully acknowledged by Sayantika Chanda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Chattopadhyaya.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 930 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanda, S., Debbarma, M., Ghosh, D. et al. Investigation of structural, mechanical and optoelectronic properties of cubic Cd1−xyZnxHgySe quaternary alloys through first-principle calculations. Bull Mater Sci 45, 34 (2022). https://doi.org/10.1007/s12034-021-02610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02610-3

Keywords

Navigation