Skip to main content
Log in

First-principle calculations of structural and optoelectronic properties of cubic CdxZn1−xSySe1−y quaternary alloys with modified Becke–Johnson (mBJ) functional

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

First-principle calculations in association with modified Becke–Johnson (mBJ-GGA) potentials have been performed on optoelectronic properties of CdxZn1−xSySe1−y quaternary alloys. Each semiconductor specimen within this quaternary system is a direct band gap (Γ–Γ) semiconductor. An increase in anionic (S) concentration y results in nonlinear decrease in lattice constant and increase in bulk modulus and fundamental band gap (Eg) at each cationic (Cd) concentration x. In contrast, reverse trend is observed in cationic concentration (x) dependence of each of these parameters at each anionic concentration (y). Calculated lattice constant and band gap versus concentrations (x, y) contour plots are useful in designing new quaternary alloys with targeted optoelectronic properties. An increase in calculated Eg results in decrease in each of the calculated static dielectric constant \( \varepsilon_{1} (0) \), static refractive index n(0), static reflectivity R(0) and vice versa. On the other hand, an increase in calculated Eg results in the enhancement in calculated critical point energy (Ec) in each of the imaginary dielectric function \( \varepsilon_{2} (\omega ) \), extinction coefficient \( k(\omega ) \), optical conductivity \( \sigma (\omega ) \), absorption \( \alpha (\omega ) \) spectra and vice versa. Calculations have also shown that zinc blende GaAs and ZnSe are suitable substrates for the growth of several CdxZn1−xSySe1−y quaternary alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R J Nelmes and M I McMohan Semicond. Semimetals 54 145 (1998)

    Article  Google Scholar 

  2. D Gal, G Hodes, D Hariskos, D Braunger and H W Schock Appl. Phys. Letts. 73 3135 (1998)

    Article  ADS  Google Scholar 

  3. W U Huynh, J J Dittmer and A P Alivisato Science 295 2425 (2002)

  4. X Fang, T Zhai, U K Gautam, L Li, L Wu, Y Bando and D Golberg Prog. Mater. Sci. 56 175 (2011)

    Article  Google Scholar 

  5. M A Hasse, J Qui, J M De Puydt and H Cheng Appl. Phys. Letts. 59 1272 (1991)

    Article  ADS  Google Scholar 

  6. O Medelung (Ed.), Landolt Bornstein: Numerical Data and Functional Relationship in Science and Technology, 17b (Springer, Berlin, 1982)

    Google Scholar 

  7. N Kh Abrikosov, V B Bankina, L V Poretskaya, L E Shelimova and E V Skudnova, Semiconducting II-VI, IV-VI and V- VI Compounds (Plenum, New York, 1969)

    Book  Google Scholar 

  8. W H Strehlow and E L Cook, J. Phys. Chem. Ref. Data 2 163 (1973)

    Article  ADS  Google Scholar 

  9. W A Harrison, Electronic Structure and the Properties of Solids (Freeman, San-Francisco, USA, 1980)

    Google Scholar 

  10. A Manabe, A Mitsuishi and H Yoshinaga, Jpn. J. Appl. Phys. 6 593 (1967)

    Article  ADS  Google Scholar 

  11. T M Bieniewski and S J Czyzak J. Opt. Soc. Am. 53 496 (1963)

    Article  Google Scholar 

  12. S J Czyzak, W M Barker, R C Crane and J B Howe, J. Opt. Soc. Am. 47 240 (1957)

    Article  ADS  Google Scholar 

  13. S Ves, U Schwarz, N E Christensen, K Syassen and M Cardona, Phys. Rev. B 42 9113 (1990)

    Article  ADS  Google Scholar 

  14. B H Lee, J. Appl. Phys. 41 2988 (1970)

    Article  ADS  Google Scholar 

  15. A Pan, H Yang, R Yu and B. Zou1 Nanotechnology 17 1083 (2006)

  16. L A Thi, N D Cong, N T Dang, N X Nghia and V X Quang J. Electron. Mater. 45 2621 (2016)

    Article  ADS  Google Scholar 

  17. W C Chou, C S Yang, A H M Chu, A J Yeh, C S Ro, W H Lan, S L Tu, R C Tu, S C Chou, Y K Su and W Y Uen J. Appl. Phys. 84 2245 (1998)

    Article  ADS  Google Scholar 

  18. S Park, H Kim, C Jin and C Lee Current Appl. Phys. 12 499 (2012)

    Article  ADS  Google Scholar 

  19. L J Chen, C R Lee, Y J Chuang, Z H Wub and C Chenc Cryst. Eng. Commun. 17 4434 (2015)

    Article  Google Scholar 

  20. A A Akl, S A Aly and H Howari Chalcogenide Letts. 13 247 (2016)

    Google Scholar 

  21. Sz Fujita, S Hayashi, M Funato, T Yoshie and Sg Fujita, J. Crystal Growth 107 674 (1991)

    Article  ADS  Google Scholar 

  22. T Y Lui, J A Zapien, H Tang, D D D Ma, Y K Liu, C S Lee, S T Lee, S L Shi and S J Xu Nanotechnology 17 5935 (2006)

    Google Scholar 

  23. D Joung, M Arif, S Biswas, S Kar, S Santra and S I Khondaker Nanotechnology 20 445204 (2009)

    Google Scholar 

  24. A Benkert, C Schumacher, K Brunner and R B Neder Appl. Phys. Letts. 90 162105 (2007)

    Article  ADS  Google Scholar 

  25. W Lin, M C Tamargo, H Y Wei, W Sarney, L Salamanca-Riba and B J Fitzpatrick J. Vac. Sci. Tech. B 18 1711 (2000)

    Article  Google Scholar 

  26. Y Kawakami, S Yamaguchi, Y H Wu, K Ichino, Sz Fujita and Sg Fujita Jpn. J. Appl. Phys. 30 L605 (1991)

    Article  Google Scholar 

  27. Y K Su, W R Chen, S J Chang, F S Juang, W H Lan, A C H Lin and H Chang IEEE Transact. Electron Devices 47 1330 (2000)

    Article  ADS  Google Scholar 

  28. K Miki, Y Oshita, D Katada, K Nobe, M Nomura, T Abe, H Kasada and K Ando J. Korean Phys. Soc. 53 2925 (2008)

    Article  ADS  Google Scholar 

  29. K Ichino, Y H Wu, Y Kawakami, Sz Fujita and Sg Fujita Japn. J. Appl. Phys. 30 L1624 (1991)

    Article  Google Scholar 

  30. K Ichino, K Iwami, Y Kawakami, Sz Fujita and Sg Fujita J. Electron. Mater. 22 445 (1993)

    Article  ADS  Google Scholar 

  31. Z Deng, H Yan and Y Liu J. Am. Chem. Soc. 131 17744 (2009)

    Article  Google Scholar 

  32. A Pan, R Liu, M Sun and C Z Ning ACS Nano 4 671 (2010)

    Article  Google Scholar 

  33. A Pan, R Liu, M Sun and C Z Ning J. Am. Chem. Soc. 131 9502 (2009)

    Article  Google Scholar 

  34. M Z Huang and W Y Ching J. Phys. Chem. Solids 46 977 (1985)

    Article  ADS  Google Scholar 

  35. M Z Huang and W Y Ching Phys. Rev. B 47 9449 (1993)

    Article  ADS  Google Scholar 

  36. O Zakharov, A Rubio, X Blase, M L Cohen and S G Loui Phys. Rev. B 50 10780 (1994)

    Article  ADS  Google Scholar 

  37. J Heyd, J E Peralta and G E Scuseria J. Chem. Phys. 123 174101 (2005)

    Article  ADS  Google Scholar 

  38. E Deligoz, K Colakoglu and Y Ciftci Physica B 373 124 (2006)

    Article  Google Scholar 

  39. S Ouendadji, S Ghemid, H Meradji and F El Haj Hassan Comp. Matr. Sci. 50 1460 (2011)

    Article  Google Scholar 

  40. S H Wei and S B Zhang Phys. Rev. B 62 6944 (2000)

    Article  ADS  Google Scholar 

  41. L Guo, S Zhang, W Feng, G Hu and W Li J. Alloy. Comp. 579 583 (2013)

    Article  Google Scholar 

  42. S Sarkar, S Pal, P Sarkar, A L Rosa and T Frauenheim J. Chem. Theor. Comput. 7 2262 (2011)

    Article  Google Scholar 

  43. N Benkhettou, D Rached and M. Rabah, Czech. J. Phys. 56 409 (2006)

    Article  ADS  Google Scholar 

  44. A D Corsa, S Baroni, R Resta and S Gironcoli Phys. Rev. B 47 3588 (1993)

    Article  ADS  Google Scholar 

  45. F Kootstra, P L de Boeij and J G Snijders Phy. Rev. B 62 7071 (2000)

    Article  ADS  Google Scholar 

  46. A Fleszar and W Hanke Phys. Rev. B 71 045207 (2005)

    Article  ADS  Google Scholar 

  47. M Oshikiri and F Aryasetiawan Phys. Rev. B 60 10754 (1999)

    Article  ADS  Google Scholar 

  48. G D Lee, M H Lee and J Ihm Phys. Rev. B 52 1459 (1995)

    Article  ADS  Google Scholar 

  49. R Gangadharan, V Jayalakshmi, J Kalaiselvi, S Mohan, R Murugan and B Palanivel J. Alloy. Compd. 359 22 (2003)

    Article  Google Scholar 

  50. M Bilal, M Shafiq, I Ahmad and I Khan J. Semiconductors 35 072001(2014)

    Article  ADS  Google Scholar 

  51. S Ouendadji, S Ghemid, H Meradji and F El Haj Hassan Comp. Matr. Sci. 48 206 (2010)

    Article  Google Scholar 

  52. I Khan, I Ahmad, H A R Aliabad, S J Asadabadi, Z Ali and M Maqbool Comp. Mater. Sci. 77 145 (2013)

    Article  Google Scholar 

  53. M Ameri, F Mired, I Ameri and Y Al-Douri Mater. Express 4 521 (2014)

    Article  Google Scholar 

  54. D Long, M Li, D Meng, R Ahuja and Y He J. Appl. Phys. 123 105103 (2018)

    Article  ADS  Google Scholar 

  55. F ElHajHassan, B Amrani and F Bahsoun Physica B 391 363 (2007)

    Article  Google Scholar 

  56. C B Swarnkar, R K Pandya, U Paliwal, N N Patel and K B Joshi Chalcogenide Letts. 6 137 (2009)

    Google Scholar 

  57. S Bendaif, A Boumaza, O Nemiri, K Boubendira, H Meradji, S Ghemid and F El Haj Hassan Bull. Mater. Sci. 38 1 (2015)

    Article  Google Scholar 

  58. N A Noor, N Ikram, S Ali, S Nazir, S M Alay-e-Abbas and A Shaukat J. Alloys Comp. 507 356 (2010)

    Article  Google Scholar 

  59. M Ameri, M Fodil, F Z A Benkabou, Z Mahdjoub, F Boufadi and A Bentouaf Mater. Sci. Appl. 3 768 (2012)

    Google Scholar 

  60. N A Noor, W Tahir, F Aslam and A. Shaukat Physica B 407 943 (2012)

    Article  ADS  Google Scholar 

  61. G Murtaza, N Ullah, A Rauf, R Khenata, S Bin Omran, M Sajjad and A Waheed Mater. Sci. Semicond. Process. 30 462 (2015)

    Article  Google Scholar 

  62. N Ullah, G Murtaza, R Khenata, J Rehman, H Ud Din and S Bin Omran Mater. Sci. Semicond. Process. 26 681 (2014)

    Article  Google Scholar 

  63. M Ameri, D Rached, M Rabah, R Khenata, N Benkhettou, B Bouhafs and M Maachou Mater. Sci. Semicond. Process. 10 6 (2007)

    Article  Google Scholar 

  64. M Ameri, D Rached, M Rabah, F El Haj Hassan, R Khenata and M Doui-Aici Phys. Stat. Sol. b 245 106 (2008)

    Article  ADS  Google Scholar 

  65. A Boukortt, B Abbar, H Abid, M Sehil, Z Bensaad and B Soudini Mater. Chem. Phys. 82 911 (2003)

    Article  Google Scholar 

  66. A Boukortt, S Berrah, R Hayn and A Zaoui Physica B 405 763 (2010)

    Google Scholar 

  67. O A Yassin Optik 127 1817 (2016)

  68. P Hohenberg and W Kohn, Phys. Rev. B 136 864 (1964)

    Article  ADS  Google Scholar 

  69. W Kohn and L J Sham, Phys. Rev. 140 A1133 (1965)

    Article  ADS  Google Scholar 

  70. A H Reshak, Scientific Reports 7 46415 (2017); https://doi.org/10.1038/srep46415

    Article  ADS  Google Scholar 

  71. A H Reshak Phys. Chem. Chem. Phys. 16 10558 (2014)

  72. G E Davydyuk, O Y Khyzhun, A H Reshak, H Kamarudind, G L Myronchuk, S P Danylchuk, A O Fedorchuk, L V Piskach, M Y Mozolyuk and O V Parasyuk Phys. Chem. Chem. Phys. 15 6965 (2013)

    Article  Google Scholar 

  73. A H Reshak, Y M Kogut, A O Fedorchuk, O V Zamuruyeva, G L Myronchuk, O V Parasyuk, H Kamarudin, S Auluck, K J Plucinski and J Bila Phys. Chem. Chem. Phys. 15 18979 (2013)

    Article  Google Scholar 

  74. A H Reshak, D Stys, S Auluck and I V Kityk Phys. Chem. Chem. Phys. 13 2945 (2011).

    Article  Google Scholar 

  75. A H Reshak RSC Adv. 4 39565 (2014)

  76. A H Reshak RSC Adv. 4 63137 (2014).

  77. P Blaha, K Schwarz, G H Madsen, D Kbasnicka and J Luitz, WIEN2K, FP-LAPW + lo Program for Calculating Crystal Properties (Vienna University of Technology, Austria, 2001)

    Google Scholar 

  78. O K Andersen, Phys. Rev. B 42 3063 (1975)

    Google Scholar 

  79. J P Perdew, K Burke and M Ernzerhof, Phys. Rev. Letts. 77 3865 (1996)

    Article  ADS  Google Scholar 

  80. F Tran and P Blaha, Phys. Rev. Letts. 102 226401 (2009)

    Article  ADS  Google Scholar 

  81. A Kokalj, Comp. Mat. Sci. 28 155 (2003) Code available from http://www.xcrysden.org/.

  82. F D Murnaghan, Proc. Natl. Acad. Sci. USA 30 244 (1944)

    Article  ADS  Google Scholar 

  83. M Fox, Optical Properties of Solids (Oxford University Press, UK, 2001)

    Google Scholar 

  84. L Vegard, Z. Phys. 5 17 (1921)

    Article  ADS  Google Scholar 

  85. M Dadsetani and A Pourghazi, Phys. Rev. B 73 195102 (2006)

    Article  ADS  Google Scholar 

  86. D R Penn, Phys. Rev. 128 2093(1962)

    Article  ADS  Google Scholar 

  87. V P Gupta and N M Ravindra Phys. Status Solidi B 10 715 (1980)

    Article  ADS  Google Scholar 

  88. N M Ravindra, S Auluck and V K Srivastava Phys. Status Solidi B 93 K155 (1979)

    Article  ADS  Google Scholar 

  89. J P L Herve and L K J Vandamme Infrared Phys. Technol. 35 609 (1994)

    Article  ADS  Google Scholar 

  90. H Okuyama, Y Kishita and A Ishibashi, Phys. Rev. B 57 2257 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The first author Ms. Sayantika Chanda is very much grateful to DST, Govt. of India for awarding her DST-INSPIRE Junior Research Fellowship [Ref. No DST/INSPIRE/03/2017/002068]. The authors also convey their thanks to UGC, Govt. of India for financial support to perform this research work through financial assistance under UGC–SAP program 2016 [Ref. No F.530/23/DRS-I/2018 (SAP-I)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Chattopadhyaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 10393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanda, S., Ghosh, D., Debnath, B. et al. First-principle calculations of structural and optoelectronic properties of cubic CdxZn1−xSySe1−y quaternary alloys with modified Becke–Johnson (mBJ) functional. Indian J Phys 95, 2313–2325 (2021). https://doi.org/10.1007/s12648-020-01880-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01880-7

Keywords

Navigation