Skip to main content
Log in

Reduced graphene oxide containing barium hexaferrite composites for high frequency microwave absorption

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study aims at designing microwave absorbing composites for controlling electromagnetic (EM) pollution by absorption of EM waves inside the composite material. For this purpose, a light weight and flexible microwave absorber composite was fabricated using reduced graphene oxide (RGO) and W-type barium hexaferrite (BaW) in polyvinylidene fluoride (PVDF) matrix. W-type hexaferrite nanoparticles (BaW) were fabricated by sol–gel auto-combustion method. The fabricated nanoparticles were mixed in PVDF by mechanical grinding. Subsequently, the composites were designed by ultrasonic mixing BaW/PVDF with RGO. The prepared samples were characterized through different techniques for their structural, morphological, and EM properties, as discussed in detail. The X-ray diffractometer results showed the existence of single-phase hexaferrite structure with an average particle size of 48.9 nm. The scanning electron microscope results show that BaW/PVDF is completely embedded in RGO. Dielectric results showed that addition of RGO in BaW/PVDF increases polarization effect, which increases dielectric constant of material. Moreover, RGO decreases the saturation magnetization of composites, which increases the anisotropy constant and hence increases the magnetic loss of material. The composite C3 having RGO to ferrite ratio 15:100 exhibits the maximum reflection loss of −11 dB with broad bandwidth <−10 dB for complete X-band (8.2–12.4 GHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Du Y, Liu W, Qiang R, Wang Y, Han X, Ma J et al 2014 ACS Appl. Mater. Interfaces 6 12997

    Article  CAS  Google Scholar 

  2. Veena M, Shankaramurthy G, Jayanna H and Somashekarappa H 2018 J. Alloys Compd. 735 2532

    Article  CAS  Google Scholar 

  3. Dippong T, Levei E A, Tanaselia C, Gabor M, Nasui M, Tudoran L B et al 2016 J. Magn. Magn. 410 47

    Article  CAS  Google Scholar 

  4. Duan Y, Cui Y, Zhang B, Ma G and Tongmin W 2019 J. Alloys Compd. 773 194

    Article  CAS  Google Scholar 

  5. Zeng J, Fan H, Wang Y, Zhang S, Xue J and Zhang C 2012 J. Alloys Compd. 524 59

    Article  CAS  Google Scholar 

  6. Galeev A 2000 Neurosci. Behav. Physiol. 30 187

    Article  CAS  Google Scholar 

  7. Kanna R R 2019 Ceram. Int. 45 16138

    Article  CAS  Google Scholar 

  8. Liu Q, Cao Q, Bi H, Liang C, Yuan K, She W et al 2016 J. Eur. Ceram. 28 486

    CAS  Google Scholar 

  9. Pawar S P, Biswas S, Kar G P and Bose S 2016 Polymer 84 398

    Article  CAS  Google Scholar 

  10. Chung D 2012 Carbon 50 3342

    Article  CAS  Google Scholar 

  11. Biswas S, Panja S S and Bose S 2017 Mater. Chem. Front. 1 132

    Article  CAS  Google Scholar 

  12. Dai Y, Lan Z, Yu Z, Sun K, Guo R, Wu G et al 2021 Ceram. Int. 47 8980

    Article  CAS  Google Scholar 

  13. Qi G, Liu Y, Chen Y, Liu Q, Chen J, Yin Q et al 2020 J. Mater. Sci. Mater. 1

  14. Liu Q, Wu C, Wang Y, Liu Y and Zhang H 2020 IOP Conf.: Ser. Mater. Sci. Eng. 782 022038

    CAS  Google Scholar 

  15. Chang L, Ren X, Yin H, Tang Y, Pu X and Yuan H 2020 J. Mater. Sci. Mater. 31 20908

    Article  CAS  Google Scholar 

  16. Zong M, Huang Y, Zhao Y, Sun X, Qu C, Luo D et al 2013 RSC Adv. 3 23638

    Article  CAS  Google Scholar 

  17. Meng F, Wang H, Huang F, Guo Y, Wang Z, Hui D et al 2018 Compos. B Eng. 137 260

    Article  CAS  Google Scholar 

  18. Warner J H, Schaffel F, Rummeli M and Bachmatiuk A 2012

  19. Liang K, Qiao X-J, Sun Z-G, Guo X-D, Wei L and Qu Y 2017 Appl. Phys. A 123 1

    Article  Google Scholar 

  20. Zhang M, Jiang Z, Si H, Zhang X, Liu C, Gong C et al 2020 Phys. Chem. Chem. Phys. 22 8639

    Article  CAS  Google Scholar 

  21. Rowley-Neale S J, Randviir E P, Dena A S A and Banks C E 2018 Appl. Mater. Today 10 218

    Article  Google Scholar 

  22. Sabira K, Jayakrishnan M, Saheeda P and Jayalekshmi S 2018 Eur. Polym. J. 99 437

    Article  CAS  Google Scholar 

  23. Lovinger A 1982 Appl. Sci. 1 195

    Google Scholar 

  24. Anand S and Pauline S 2021 Adv. Mater. Interfaces 8 2001810

    Article  CAS  Google Scholar 

  25. Thakur P, Kool A, Bagchi B, Hoque N A, Das S and Nandy P 2015 RSC Adv. 5 62819

    Article  CAS  Google Scholar 

  26. Kar E, Bose N, Das S, Mukherjee N and Mukherjee S 2015 Phys. Chem. Chem. Phys. 17 22784

    Article  CAS  Google Scholar 

  27. Anand S and Pauline S 2021 Nanotechnology 32 475707

    Article  CAS  Google Scholar 

  28. He H, Luo F, Qian N and Wang N 2015 J. Appl. Phys. 117 085502

    Article  Google Scholar 

  29. Acharya S, Gopinath C S, Alegaonkar P and Datar S 2018 Diam. Relat. Mater. 89 28

    Article  CAS  Google Scholar 

  30. Guo F, Zi W, Ji G, Zou L and Gan S 2015 J. Polym. Res. 22 1

    Article  CAS  Google Scholar 

  31. Abbas Q, Murtaza G, Muhammad N, Ishfaq M, Iqbal H, Asad A et al 2020 Ceram. Int. 46 5920

    Article  CAS  Google Scholar 

  32. Kumar S, Manglam M K, Supriya S, Satyapal H K, Singh R K and Kar M 2019 J. Magn. Magn. 473 312

    Article  CAS  Google Scholar 

  33. Kurian M, Thankachan S, Nair D S, Aswathy E, Babu A, Thomas A et al 2015 J. Adv. Ceram. 4 199

    Article  CAS  Google Scholar 

  34. Bhattacharya P and Das C K 2013 Ind. Eng. Chem. Res. 52 9594

    Article  CAS  Google Scholar 

  35. Lu X, Peng Y, Qiu H, Liu X and Ge L 2017 Desalination 413 127

    Article  CAS  Google Scholar 

  36. Layek R K, Samanta S, Chatterjee D P and Nandi A K 2010 Polymers 51 5846

    Article  CAS  Google Scholar 

  37. Nohara L B, Petraconi Filho G, Nohara E L, Kleinke M U and Rezende M C 2005 Mater. Res. 8 281

    Article  Google Scholar 

  38. Tang J, Liu X, Rehman K M U, Li D, Li M and Yang Y 2018 J. Magn. Magn. 452 354

    Article  CAS  Google Scholar 

  39. Sarkar S, Raul K, Pradhan S, Basu S and Nayak A 2014 Physica E Low Dimens. Syst. Nanostruct. 64 78

    Article  CAS  Google Scholar 

  40. Acharya S, Ray J, Patro T, Alegaonkar P and Datar S 2018 Nat. Nanotechnol. 29 115605

    Article  Google Scholar 

  41. Zhu J, Wei S, Haldolaarachchige N, Young D P and Guo Z 2011 J. Phys. Chem. C 115 15304

    Article  CAS  Google Scholar 

  42. Guo J, Wang X, Miao P, Liao X, Zhang W and Shi B 2012 J. Mater. Chem. 22 11933

    Article  CAS  Google Scholar 

  43. Pan J, Sun X, Wang T, Zhu Z, He Y, Xia W et al 2018 Appl. Surf. 457 271

    Article  CAS  Google Scholar 

  44. Zou H, Li S, Zhang L, Yan S, Wu H, Zhang S et al 2011 J. Magn. Magn. 323 1643

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Ishfaq Piracha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piracha, M.I., Murtaza, G., Imranullah, M. et al. Reduced graphene oxide containing barium hexaferrite composites for high frequency microwave absorption. Bull Mater Sci 45, 41 (2022). https://doi.org/10.1007/s12034-021-02608-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02608-x

Keywords

Navigation