Skip to main content

Advertisement

Log in

Effect of Cr on ZrO2 nanostructures for gas sensing investigation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study deals with the synthesis, characterization and gas sensing interrogations of pure and Cr (5 and 15%) doped ZrO2. The conventional precipitation route is committed for the synthesis of the pure and Cr-doped ZrO2 powder and the films were formulated by drop casting mode by exploiting ZrOCl2·8H2O as precursor, CrO3 as doping agent and NH4OH as stabilizing agent. The structural properties, optical properties and electrical properties of the handled samples were anatomized by X-ray diffraction (XRD), scanning electron microscopy, ultraviolet–differential reflectance spectroscopy (UV-DRS) spectroscopy, photoluminescence (PL) studies and current–voltage (IV) measurement. The structure and size of the crystal were resolved by XRD. The uniform spherical-like morphology of the particles was favoured by SEM investigation. The bandgap of the materials was reckoned by UV-DRS report. The occupancy of oxygen vacancies in the samples was conceded by PL studies. The ohmic contact of the samples with the electrodes has been professed by IV measurements. The gas sensing competency of the drop casted films were monitored by the exposure of the different concentrations of reducing gases like ammonia, acetone, ethanol, formaldehyde and xylene. The output data render that all the processed samples exhibits a peak response towards ammonia gas, exclusively 15% of Cr-doped ZrO2 sensor shows an utmost gas response of about 48%, excellent response time and recovery time of about 68 and 72 s, respectively, among other samples. Thus, the fusion of Cr stimulates the gas sensing proficiency of ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Valentina F, Silvia C S, Sara B, Stefania Z and Eugenio B 2018 Asthma Res. Pract. 4 1

    Article  Google Scholar 

  2. Alex P, Wojciech F, Johannes W, Clemens A, Helmut W, Róbert K et al 2018 J. Breath Res. 12 036002

    Article  Google Scholar 

  3. Yuichi S, Yutaro K, Hiroaki T, Toyoaki H, Kazuo S, Toshio I et al 2017 Sensors 17 287

    Article  Google Scholar 

  4. Sara I and Andrea M 2019 Brain Sci. 9 84

    Article  Google Scholar 

  5. Agnes W B, van Berkel J J B N, Jan W D, Agnieszka S, Emile F W and van Schooten F J 2012 J. Breath Res. 6 027108

    Article  Google Scholar 

  6. Durán C M, Monsalve P A G and Mosquera C 2016 J. Mater. Sci. Eng. 157 012029

    Google Scholar 

  7. Chalasani S and Mohan Kumar Ch 2017 IJCIET 8 614

    Google Scholar 

  8. Qiong W and Yunbo S 2015 IJDSN 2015 1

    Google Scholar 

  9. Dimple Rani M, Gomathi T and Maflin Shaby S 2017 IJDR 7 15419

    Google Scholar 

  10. Haoshuang G, Zhao W and Yongming H 2012 Sensors 12 5517

    Article  Google Scholar 

  11. Lado F and Ayoub L 2018 J. Electrochem. Soc. 165 B862

    Article  Google Scholar 

  12. Yu-Feng S, Shao-Bo L, Fan-Li M, Jin-Yun L, Zhen J, Ling-Tao K et al 2012 Sensors 12 2610

    Article  Google Scholar 

  13. Sofian M K, Oussama M E, Imad A A and Marsha C K 2009 Sensors 9 8158

    Article  Google Scholar 

  14. Deshmukh S B, Bari R H, Patil G E, Kajale D D, Jain G H and Patil L A 2012 Int. J. Smart Sensing Intell. Syst. 5 540

    CAS  Google Scholar 

  15. Xiangxing X and Xun W 2009 Nano Res. 2 891

    Article  Google Scholar 

  16. Bari R H, Patil S B and Deshmukh S B 2016 J. Nanosci. Nanotechnol. 2 181

    Google Scholar 

  17. John Berlin I 2017 IJARSE 6 204

    Google Scholar 

  18. Suresh S, Jiban P and Isha D 2016 J. Mater Sci. Mater. Electron 27 5622

    Article  Google Scholar 

  19. John Berlin I and Joy K 2015 Physica B 457 182

    Article  CAS  Google Scholar 

  20. Shengzhao W and Jun S 2013 J. Sol-Gel Sci. Technol. 67 339

    Article  Google Scholar 

  21. Nian-Qi Y, Zhi-Chao L, Guang-Rui G and Bao-Jia W 2017 Chin. Phys. B 26 106801

    Article  Google Scholar 

  22. Singh A K and Umesh T N 2014 Sci. World J. 2014 1

    Google Scholar 

  23. Aysar S K, Elias S, Azmi Z and Nayereh S 2016 J. Nanomater. 2016 1

    Google Scholar 

  24. Apiwat D, Gamonpetch P, Manop P and Bussarin K 2017 Sens. Actuators B Chem. 242 202

    Article  Google Scholar 

  25. Elisabeth W L, Robert M P, do R Jefferson J, Pavel N D, Sebastian D, Anke P et al 2016 J. Mater. Chem. C 4 62

    Article  Google Scholar 

  26. Deshmukh S B and Bari R H 2015 ILCPA 56 120

    Article  Google Scholar 

  27. Nor Monica A, Jaafar A, Nor Azah Y, Ahmad Hazri A R, Samsulida Abd R and Md. Rakibul H 2016 Biosensors 6 31

    Article  Google Scholar 

  28. Feng Z, Dengyue S, Jiuming X, Shimin X, Huagui H, Jun L et al 2017 IJHT 35 765

    Article  Google Scholar 

  29. Masciandaro S, Torrell M, Leone P and Tarancón A 2019 J. Eur. Ceram. Soc. 39 9

    Article  CAS  Google Scholar 

  30. Zeynep O Z and Ender K L 2010 J. Prosthodont. 19 64

    Article  Google Scholar 

  31. Mingji J, SangChul H, TaeHyun S and Kwangsoo N 2000 Physica C 334 243

    Article  Google Scholar 

  32. George F F, Leon M C, Ayo A and Russell B 2010 Sensors 10 5469

    Article  Google Scholar 

  33. Xiaoming F 2014 Adv. Mater. Res 873 164

    Google Scholar 

  34. Dorothée V S and Sabine S 2014 Inorganics 2 468

    Article  Google Scholar 

  35. Rais A, Taibi K, Addou A, Zanoun A and Al-Douri Y 2014 Ceram. Int. 40 14413

    Article  CAS  Google Scholar 

  36. Sue-min C and Ruey-an D 2005 Thin Solid Films 489 17

    Article  Google Scholar 

  37. Shi-Wei W, Xiao-Xian H and Jing-Kun G 1996 J. Eur. Ceram. Soc. 16 1057

    Article  Google Scholar 

  38. Ales S, David S, Craig E B and Jiri P 2017 Catalysts 7 168

    Article  Google Scholar 

  39. Geethalakshmi K, Prabhakaran T and Hemalatha J 2012 IJMME 6 256

    Google Scholar 

  40. Mude K M, Mude B M, Raulkar K B, Yawale S S and Yawale S P 2017 Int. J. Chem. Tech. Res. 10 494

    CAS  Google Scholar 

  41. Thomas G, Wolfgang W, Michael S P, Bernhard K and Simon P 2016 AIP Adv. 6 025119

    Article  Google Scholar 

  42. Nahida B H, Ghuson H M and Murtada M A 2014 IJCET 4 1627

    Google Scholar 

  43. Deo P, Chernet A, Keya D, Bedvir S, Rishipal S, Shaaban E R et al 2016 Ceram. Int. 42 5600

    Article  Google Scholar 

  44. Khayatian A, Safa S, Azimirad R, AlmasiKashi M and Akhtarianfar S F 2016 Physica E 84 71

    Article  CAS  Google Scholar 

  45. Safa S, Azimirad R, Mohammadi Kh, Hejazi R and Khayatian A 2015 Measurement 73 588

    Article  Google Scholar 

  46. Deshmukh S B 2018 IJCPS 7 435

    Article  CAS  Google Scholar 

  47. Rifki S, Suhandaa S and Bambang S P 2015 J. Ceram. Process Res. 16 438

    Google Scholar 

  48. Viruthagiri G, Gopinathan E, Shanmugam N and Gobi R 2014 Spectrochim. Acta 131 556

    Article  CAS  Google Scholar 

  49. Vinoth E, Gowri Shankar S and Gopalakrishnan N 2018 Appl. Phys. A 124 433

    Article  Google Scholar 

  50. Mote V D, Purushotham Y and Dole B N 2012 JTAP 6 6

    Google Scholar 

  51. Safa S, Azimirad R, Safalou M S and Rabbani M 2015 Desalin. Water Treat. 57 6723

    Article  Google Scholar 

  52. Mishra S K, Roy H, Lohar A K, Samanta S K, Tiwari S and Dutta K 2015 Mater. Sci. Eng. 75 012001

    Google Scholar 

  53. Avner R and Yigal K 2004 J. Appl. Phys. 95 6374

    Article  Google Scholar 

  54. Biener J, Wittstock A, Baumann T, Weissmüller J, Bäumer M and Hamza A 2009 Materials 2 2404

    Article  CAS  Google Scholar 

  55. Chengxiang W, Longwei Y, Luyuan Z, Dong X and Rui G 2010 Sensors 10 2088

    Article  Google Scholar 

  56. Wang Z, Yang B, Fu Z, Dong W, Yang Y and Liu W 2005 Appl. Phys. A 81 691

    Article  CAS  Google Scholar 

  57. Lin H, Huang C P, Li W, Ni C, Ismat Shah S and Yao-Hsuan T 2006 Appl. Catal. B Environ. 68 1

    Article  CAS  Google Scholar 

  58. Sue-min C and Ruey-an D 2007 Chem. Mater. 19 4804

    Article  Google Scholar 

  59. Hemalatha E and Gopalakrishnan N 2019 Appl. Phys. A 125 493

    Article  CAS  Google Scholar 

  60. Faisal M, Ruth P, Neil R M, Walter E J and Chintalapalle V R 2016 J. Appl. Phys. 120 2331

    Google Scholar 

  61. Vinoth E, Gowrishankar S and Gopalakrishnan N 2016 Mater. Manuf. Process. 32 377

    Article  Google Scholar 

  62. Artur R and Aleksandra S 2015 Sensors 15 20069

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Gopalakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemalatha, E., Gopalakrishnan, N. Effect of Cr on ZrO2 nanostructures for gas sensing investigation. Bull Mater Sci 44, 292 (2021). https://doi.org/10.1007/s12034-021-02585-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02585-1

Keywords

Navigation