Skip to main content
Log in

Study of self-powered and broadband photosensing properties of CdS/PbS-decorated TiO2 nanorods/reduced graphene oxide junction

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Self-powered broadband photodetector was fabricated using PbS/CdS-decorated TiO2 nanorods (NRs). TiO2 NRs were grown using hydrothermal method and CdS/PbS layers were deposited by chemical bath deposition process. Metal-free top electrode of the photodetector was prepared using chemically reduced graphene oxide (rGO). PbS/CdS-decorated TiO2 NRs based photodetector showed significant photocurrent over broad spectral range. The maximum responsivity \((R_{\lambda } ) \) and detectivity (\(D_{\lambda }\)) of the photodetector at zero bias was obtained, ~0.34 A W–1 and ~162742.42 Hz1/2 W–1, respectively, at 400 nm. TiO2/CdS/PbS/rGO device showed sharp rise and decline of photocurrent under ON/OFF of white light. This device also demonstrated excellent self-powered nature with open circuit voltage ~0.40 V, short circuit current ~0.077 mA and power conversion efficiency ~0.16%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Caratto V, Aliakbarian B, Casazza A A, Setti L, Bernini C, Perego P et al 2013 Mater. Res. Bull. 48 2095

    Article  CAS  Google Scholar 

  2. Jagadale T C, Takale S P, Sonawane R S, Joshi H M, Patil S I, Kale B B et al 2008 J. Phys. Chem. C 112 14595

    Article  CAS  Google Scholar 

  3. Bang J H and Kamat P V 2010 Adv. Funct. Mater. 20 1970

    Article  CAS  Google Scholar 

  4. Jeng M-J, Wung Y-L, Chang L-B and Chow L 2013 Int. J. Photoenergy 2013 1

    Google Scholar 

  5. Gao Y, Xu J, Shi S, Dong H, Cheng Y, Wei C et al 2018 ACS Appl. Mater. Interfaces 10 11269

    Article  CAS  Google Scholar 

  6. Wu S, Chen C, Wang J, Xiao J and Peng T 2018 ACS Appl. Energy Mater. 1 1649

    Article  CAS  Google Scholar 

  7. Dhar S, Chakraborty P, Majumder T and Mondal S P 2018 ACS Appl. Mater. Interfaces 10 41618

    Article  CAS  Google Scholar 

  8. Zheng W, Li X, He G, Yan X, Zhao R and Dong C 2014 RSC Adv. 4 21340

    Article  CAS  Google Scholar 

  9. Lv P, Fu W, Mu Y, Sun H, Su S, Chen Y et al 2015 J. Alloys Compd. 621 30

    Article  CAS  Google Scholar 

  10. Abbas M A, Basit M A, Park T J and Bang J H 2015 Phys. Chem. Chem. Phys. 17 9752

    Article  CAS  Google Scholar 

  11. Yu L, Li Z, Liu Y, Cheng F and Sun S 2015 J. Mater. Sci. Mater. Electron. 26 2286

    Article  CAS  Google Scholar 

  12. Guijarro N, Lana-Villarreal T, Lutz T, Haque S A and Gómez R 2012 J. Phys. Chem. Lett. 3 3367

    Article  CAS  Google Scholar 

  13. Lee S, Flanagan J C, Kang J, Kim J, Shim M and Park B 2015 Sci. Rep. 5 17472

    Article  CAS  Google Scholar 

  14. Pawar S B, Shaikh J S, Devan R S, Ma Y R, Haranath D, Bhosale P N et al 2011 Appl. Surf. Sci. 258 1869

    Article  CAS  Google Scholar 

  15. Rekemeyer P H, Chang S, Chuang C-HM, Hwang G W, Bawendi M G and Gradečak S 2016 Adv. Energy Mater. 6 1600848

    Article  Google Scholar 

  16. You D, Xu C, Zhang W, Zhao J, Qin F and Shi Z 2019 Nano Energy 62 310

    Article  CAS  Google Scholar 

  17. Tian W, Wang Y, Chen L and Li L 2017 Small 13 1701848

    Article  Google Scholar 

  18. Bai Z, Fu M and Zhang Y 2017 J. Mater. Sci. 52 1308

    Article  CAS  Google Scholar 

  19. Hatch S M, Briscoe J and Dunn S 2013 Adv. Mater. 25 867

    Article  CAS  Google Scholar 

  20. Peng L, Hu L and Fang X 2014 Adv. Funct. Mater. 24 2591

    Article  CAS  Google Scholar 

  21. Wang Z L 2013 ACS Nano 7 9533

    Article  CAS  Google Scholar 

  22. Wang Z L 2008 Adv. Funct. Mater. 18 3553

    Article  CAS  Google Scholar 

  23. Xie Y, Wei L, Wei G, Li Q, Wang D, Chen Y et al 2013 Nanoscale Res. Lett. 8 188

    Article  Google Scholar 

  24. Abdolhosseinzadeh S, Asgharzadeh H and Seop Kim H 2015 Sci. Rep. 5 10160

    Article  CAS  Google Scholar 

  25. Wang Y, Chen Y, Lacey S D, Xu L, Xie H, Li T et al 2018 Mater. Today 21 186

    Article  CAS  Google Scholar 

  26. Deka N, Chakraborty P, Chandra Patra D, Dhar S and Mondal S P 2020 Mater. Sci. Semicond. Process. 118 105165

    Article  CAS  Google Scholar 

  27. De Silva K K H, Huang H-H and Yoshimura M 2018 Appl. Surf. Sci. 447 338

    Article  Google Scholar 

  28. Wang Y, Li L, Huang X, Li Q and Li G 2015 RSC Adv. 5 34302

    Article  CAS  Google Scholar 

  29. Sankapal B R, Salunkhe D B, Majumder S and Dubal D P 2016 RSC Adv. 6 83175

    Article  CAS  Google Scholar 

  30. Yang X, Yang Y, Wang B, Wang T, Wang Y and Meng D 2019 Solid State Sci. 92 31

    Article  CAS  Google Scholar 

  31. Mamiyev Z Q and Balayeva N O 2015 Opt. Mater. 46 522

    Article  CAS  Google Scholar 

  32. Jiao J, Zhou Z-J, Zhou W-H and Wu S-X 2013 Mater. Sci. Semicond. Process. 16 435

    Article  CAS  Google Scholar 

  33. Wang P, Zhang Z, Wang H, Zhang T, Cui H, Yang Y et al 2019 J. Nanomater. 2019 1

    CAS  Google Scholar 

  34. Viezbicke B D, Patel S, Davis B E and Birnie D P 2015 Phys. Status Solidi B 252 1700

    Article  CAS  Google Scholar 

  35. Xu T and Yu L 2014 Mater. Today 17 11

    Article  CAS  Google Scholar 

  36. Zhu Y, Wang R, Zhang W, Ge H and Li L 2014 Appl. Surf. Sci. 315 149

    Article  CAS  Google Scholar 

  37. Li Y, Wei L, Chen X, Zhang R, Sui X, Chen Y et al 2013 Nanoscale Res. Lett. 8 67

    Article  Google Scholar 

  38. da Silva Filho J M C, Ermakov V A and Marques F C 2018 Sci. Rep. 8 1563

    Article  Google Scholar 

  39. Fu Y, Cao F, Wu F, Diao Z, Chen J, Shen S et al 2018 Adv. Funct. Mater. 28 1706785

    Article  Google Scholar 

  40. Davis N J L K, Böhm M L, Tabachnyk M, Wisnivesky-Rocca-Rivarola F, Jellicoe T C, Ducati C et al 2015 Nat. Commun. 6 8259

    Article  CAS  Google Scholar 

  41. Dhar S, Majumder T and Mondal S P 2017 Mater. Res. Bull. 95 198

    Article  CAS  Google Scholar 

  42. Huang Y, Yu Q, Wang J, Li X, Yan Y, Gao S et al 2015 Electron. Mater. Lett. 11 1059

    Article  CAS  Google Scholar 

  43. Chen D, Wei L, Meng L, Wang D, Chen Y, Tian Y et al 2018 Nanoscale Res. Lett. 13 92

    Article  Google Scholar 

  44. Ni S, Yu Q, Huang Y, Wang J, Li L, Yu C et al 2016 RSC Adv. 6 85951

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Central Research Facility (CRF) of NIT Agartala for XRD characterizations. We also acknowledge the DST-FIST project, Department of Physics, for UV-VIS-NIR spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvra Prakash Mondal.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 568 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deka, N., Chakraborty, P., Patra, D.C. et al. Study of self-powered and broadband photosensing properties of CdS/PbS-decorated TiO2 nanorods/reduced graphene oxide junction. Bull Mater Sci 44, 289 (2021). https://doi.org/10.1007/s12034-021-02574-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02574-4

Keywords

Navigation