Skip to main content
Log in

Microstructural, optical and dielectric variations in SnO2 nanoparticles synthesized via surfactant-assisted sol–gel route

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

SnO2 nanoparticles are synthesized via sol–gel method in the presence of two surfactants isopropyl alcohol (IPA) and lauryl alcohol (LA). The synthesized nanoparticles are characterized for the microstructural features by X-ray powder diffraction (XRD) and field-emission scanning electron micrograph. To resolve the presence of defect-related oxygen vacancies and trapped states, optical studies such as UV–visible absorbance and Raman spectra have been carried out. The charge transport in the material is analysed by studying the AC electrical conduction. The deposited tetragonal rutile-phased SnO2 nanoparticles are benefited by morphological modifications along with crystallite size reduction (from 21.5 to 15.1 nm) and an increase in dislocation density on changeover from LA to IPA in the precursor. Also, a preferential orientation of (112) plane is observed for the LA-assisted sample. The bandgap of the particles prepared via LA addition is found to be considerably larger (3.71 eV) than that of IPA-assisted sample (3.44 eV). A detailed study of Raman spectra elucidates the presence of defects. The AC conductivity analysis reveals that the mobility of charge carriers is higher in LA-assisted sample, which substantiates the findings from microstructural and optical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Yang Y, Wang Y and Yin S 2017 Appl. Surf. Sci. 420 399

    Article  CAS  Google Scholar 

  2. Zhao Q, Ma L, Zhang Q, Wang C and Xu X 2015 J. Nanomater. Article ID 850147 https://doi.org/10.1155/2015/850147

  3. Chen J S and Lou X W 2013 Small 11 1877

    Article  Google Scholar 

  4. Pan J, Shen H and Mathur S 2012 J. Nanotechnol. Article ID 917320 https://doi.org/10.1155/2012/917320

  5. Suthakaran S, Dhanapandian S, Krishnakumar N and Ponpandian N 2019 Mater. Res. Express 6 0850i3

    Article  CAS  Google Scholar 

  6. Balakrishnan K and Murugasean N 2021 Int. J. Nano Dimens. 12 76

    CAS  Google Scholar 

  7. Majumdar S and Devi P S 2010 AIP Conf. Proc. p 1

  8. Kumar P, Khadtare S, Park J and Yadav B C 2020 Mater. Lett. 278 128451

    Article  CAS  Google Scholar 

  9. Bhagwat A D, Sawant S S, Ankamwar B G and Mahajan C M 2015 J. Nano Electron. Phys. 7 04037

    Google Scholar 

  10. Aziz M, Abbas S S and Baharom W R W 2013 Mater. Lett. 91 31

    Article  CAS  Google Scholar 

  11. Kumari K P, Thomas B, Deepa S and Benoy S 2018 J. Mater. Sci: Mater. Electron. 29 13087

    Google Scholar 

  12. Maestro A, Santini E, Zabiegaj D, Llamas S, Ravera F, Liggieri L et al 2015 Ad. Condens. Matter Phys. Article ID 917516 doi:https://doi.org/10.1155/2015/917516

  13. Patil G E, Kajale D D, Gaikwad V B and Jain G H 2012 Int. Nano Lett. 2 1

    Article  Google Scholar 

  14. Winchell A N and Winchell H 1964 The microscopical characters of artificial inorganic solid substances: optical properties of artificial minerals (Academic Press)

  15. Suryanarayana C and Norton M G 2013 X-ray diffraction: a practical approach (Springer Science & Business Media)

  16. Cullity B D 1957 Sci. Am. 196 103

    Article  Google Scholar 

  17. Bahadar K S, Faisal M, Rahman M M and Jamal A 2011 Sci. Total Environ. 409 2987

    Article  Google Scholar 

  18. Devesa S, Rooney A P, Graça M P, Cooper D and Costa L C 2021 Mater. Sci. Eng.: B 263 114830

    Article  CAS  Google Scholar 

  19. Nasser S A, Afify H H, El-Hakim S A and Zayed M K 1998 Thin Solid Films 315 327

    Article  CAS  Google Scholar 

  20. Swarnkar R K, Singh S C and Gopal R 2011 Bull. Mater. Sci. 34 1363

    Article  CAS  Google Scholar 

  21. Deepa S, Kumari K P and Thomas B 2017 Ceram. Int. 43 17128

    Article  CAS  Google Scholar 

  22. Zhou J X, Zhang M S, Hong J M and Yin Z 2006 Solid State Commun. 138 242

    Article  CAS  Google Scholar 

  23. Diéguez A, Romano-Rodríguez A, Vila A and Morante J R 2001 J. Appl. Phys. 90 1550

    Article  Google Scholar 

  24. Chen Y J, Nie L, Xue X Y, Wang Y G and Wang T H 2006 Appl. Phys. Lett. 88 083105

    Article  Google Scholar 

  25. Thangadurai P, Chandra B A, Ramasamy S, Kesavamoorthy R and Ravindran T R 2005 J. Phys. Chem. Solids 66 1621

    Article  CAS  Google Scholar 

  26. Sahay P P, Mishra R K, Pandey S N, Jha S and Shamsuddin M 2012 Ceram. Int. 38 1281

    Article  CAS  Google Scholar 

  27. Bredar A R, Chown A L, Burton A R and Farnum B H 2020 ACS Appl. Energy Mater. 3 66

    Article  CAS  Google Scholar 

  28. Kungumadevi L, Sathyamoorthy R and Subbarayan A 2010 Solid State Electron. 54 58

    Article  CAS  Google Scholar 

  29. Ghosh M and Rao C N R 2004 Chem. Phys. Lett. 393 493

    Article  CAS  Google Scholar 

  30. Lanje A S, Sharma S J and Pode R B 2010 Arch. Phys. Res. 1 49

    CAS  Google Scholar 

  31. Aal A A 2006 Egypt J. Solids 29 303

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by RUSA (File No. 009/2019-20/RUSA MRP (S)/MAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Deepa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, S., Philip, A.M., George, A.S. et al. Microstructural, optical and dielectric variations in SnO2 nanoparticles synthesized via surfactant-assisted sol–gel route. Bull Mater Sci 44, 283 (2021). https://doi.org/10.1007/s12034-021-02567-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02567-3

Keywords

Navigation