Skip to main content
Log in

Structural, optical and electrical properties of copper (Cu) and [nickel (Ni), copper]: co-doped SnO2 nanoparticles prepared by sol–gel method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the un-doped, Cu-doped, and (Ni, Cu) co-doped SnO2 nanoparticles (NPs) were synthesized using the sol–gel method with a fixed concentration of copper dopant while varying the nickel concentrations. The structural, optical and electrical properties, as well as the surface morphology, were investigated systematically by various characterization techniques. The X-ray diffraction (XRD) study confirmed that the prepared samples had a tetragonal rutile crystal structure for all single-doped/co-doped and un-doped SnO2 NPs. The XRD results further confirmed that the crystalline sizes varied from 16 to 10 nm with the concentrations of the dopants. The UV–Vis diffusion reflectance spectroscopy (DRS) analysis showed that the optical band gap was found to be decreased from 3.38 to 3.27 eV when the dopant concentrations were increased. The energy dispersive analysis of X-ray spectra (EDX) results confirmed the presence of the expected elements in the prepared samples. Three major photoluminescence (PL) emission peaks were observed in the visible region, with a small shift toward lower wavelengths with dopant and co-dopant concentrations. Chemical bonding and the position of the O–Sn–O bond at 600–660 cm−1 were confirmed by the Fourier transform infrared spectroscopy (FTIR) study. The activation energies and conduction mechanisms of the prepared samples were investigated using the Hall Effect measurement method. The I–V studies confirmed that the prepared samples had a good ohmic contact behavior and the resistivity decreased significantly for co-doped sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Pascariu Dorneanu, A. Airinei, M. Grigoras, N. Fifere, L. Sacarescu, N. Lupu, L. Stoleriu, Structural, optical and magnetic properties of Ni-doped SnO2 nanoparticles. J. Alloy Compd. 668, 65–72 (2016)

    Article  Google Scholar 

  2. B. Venugopal, B. Nandan, A. Ayyachamy, V. Balaji, S. Amirthapandian, B.K. Panigrahi, T. Paramasivam, Influence of manganese ions in the band gap of tin oxide nanoparticles: structure, microstructure and optical studies. RSC Adv. 4, 6141–6150 (2014)

    Article  ADS  Google Scholar 

  3. V. Kumar, K. Singh, J. Sharma, A. Kumar, A. Vij, A. Thakur, Zn-doped SnO2 nanostructures: structural, morphological and spectroscopic properties. J. Mater. Sci. Mater. 28(24), 18849–18856 (2017)

    Article  Google Scholar 

  4. M. Batzill, U. Diebold, the surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47–154 (2005)

    Article  ADS  Google Scholar 

  5. M.P. Subramaniam, G. Arunachalam, R. Kandasamy, P. Veluswamy, I. Hiroya, Effect of pH and annealing temperature on the properties of tin oxide nanoparticles prepared by sol-gel method. J. Mater. Sci-Mater. El. 29, 658–666 (2018)

    Article  Google Scholar 

  6. E. Shanthi, V. Dutta, A.S. Banerjee, K.L. Chopra, Electrical and optical properties of undoped and antimony-doped tin oxide films. J. Appl. Phys. 51(12), 6243–6251 (1980)

    Article  ADS  Google Scholar 

  7. C. Mrabet, A. Boukhachem, M. Amlouk, T. Manoubi, Improvement of the optoelectronic properties of tin oxide transparent conductive thin films through lanthanum doping. J. Alloy Compd. 666, 392–405 (2016)

    Article  Google Scholar 

  8. E.J. López-Naranjo, L.J. González-Ortiz, L.M. Apátiga, E.M. Rivera-Muñoz, A. Manzano-Ramírez, Transparent electrodes: a review of the use of carbon-based nanomaterials. J Nanomater 2016, 1 (2016)

    Article  Google Scholar 

  9. D. Haridas, V. Gupta, Enhanced response characteristics of SnO2 thin film based sensors loaded with Pd clusters for methane detection. Sens. Actuat. B:Chem 166, 156–164 (2012)

    Article  Google Scholar 

  10. E.T.H. Tan, G.W. Ho, A.S.W. Wong, S. Kawi, A.T.S. Wee, Gas sensing properties of tin oxide nanostructures synthesized via a solid-state reaction method. Nanotechnology 19(25), 255706 (2008)

    Article  ADS  Google Scholar 

  11. A. Papaderakis, I. Mintsouli, J. Georgieva, S. Sotiropoulos, Electrocatalysts prepared by galvanic replacement. Catalysts 7(3), 80 (2017)

    Article  Google Scholar 

  12. A.M.A. Maisara, M.K. Khairudin, H. Lee, A.R. Sheikh, Synthesis of tin oxide nanostructures using hydrothermal method and optimization of its crystal size using statistical design of experiment. Procedia Chem. 19, 993–998 (2016)

    Article  Google Scholar 

  13. P. Baraneedharan, S.I. Hussain, V.P. Dinesh, C. Siva, P. Biji, M. Sivakumar, Lattice doped Zn-SnO2 nanospheres: a systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties. Appl. Surf. Sci. 357, 1511–1521 (2015)

    Article  ADS  Google Scholar 

  14. A.-M. Ungureanu, O. Oprea, B.S. Vasile, C. Andronescu, G. Voicu, I. Jitaru, Temperature effect over structure and photochemical properties of nanostructured SnO2 powders. Cent. Eur. J. Chem. 12, 909–917 (2014)

    Google Scholar 

  15. M. Ivanovskaya, E. Ovodok, V. Golovanov, The nature of paramagnetic defects in tin (IV) oxide. Chem. Phys. 457, 98–105 (2015)

    Article  Google Scholar 

  16. G. Singh, R.C. Singh, Synthesis and characterization of Gd-doped SnO2 nanostructures and their enhanced gas sensing properties. Ceram Int. 43, 2350–2360 (2017)

    Article  Google Scholar 

  17. C. Fu, J. Wang, M. Yang, X. Su, J. Xu, B. Jiang, Effect of La doping on microstructure of SnO2 nanopowders prepared by co-precipitation method. J. Non-Cryst Solids. 357, 1172–1176 (2011)

    Article  ADS  Google Scholar 

  18. M. Akram, A.T. Saleh, W.A.W. Ibrahim, A.S. Awan, R. Hussain, Continuous microwave flow synthesis (CMFS) of nano-sized tin oxide: Effect of precursor concentration. Ceram Int 42, 8613–8619 (2016)

    Article  Google Scholar 

  19. S.M. Priya, A. Geetha, K. Ramamurthi, Structural, morphological and optical properties of tin oxide nanoparticles synthesized by sol-gel method adding hydrochloric acid. J. Sol-Gel Sci. Technol. 78, 365–372 (2016)

    Article  Google Scholar 

  20. A.G. Habte, F.G. Hone, F.B. Dejene, Effect of solution pH on structural, optical and morphological properties of SnO2 nanoparticles. Phys. B: Condens. Matter. 580, 411832 (2020)

    Article  Google Scholar 

  21. A.K. Singh, V. Viswanath, V.C. Janu, Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. J. Lumin. 129(8), 874–878 (2009)

    Article  Google Scholar 

  22. R. Adhikari, A.K. Das, D. Karmakar, T.C. Rao, J. Ghatak, Structure and magnetism of Fe-doped SnO2 nanoparticles. Phys. Rev. B. 78(2), 02440 (2008)

    Article  Google Scholar 

  23. H. Jin, Y. Xu, G. Pang, W. Dong, Q. Wan, F.S. SunY, Al-doped SnO2 nanocrystals from hydrothermal systems. Mater. Chem. Phys. 85(1), 58–62 (2004)

    Article  Google Scholar 

  24. N. Salah, S. Habib, A. Azam, M.S. Ansari, W.M. Al-Shawafi, Formation of Mn-doped SnO2 nanoparticles via the microwave technique: structural, optical and electrical properties. Nanomater. Nanotech. 6, 17 (2016)

    Article  Google Scholar 

  25. X. Xu, Y. Tong, J. Zhang, X. Fang, J. Xu, F. Liu, J. Liu, W. Zhong, O.E. Lebedeva, X. Wang, Investigation of lattice capacity effect on Cu2+doped SnO2 solid solution catalysts to promote reaction performance toward NOx-SCR with NH3. Chinese J. Catal. 41(5), 877–888 (2020)

    Article  Google Scholar 

  26. M. Kuppan, S. Kaleemulla, N. MadhusudhanaRao, N. SaiKrishna, Structural, optical and magnetic properties of Ni-doped SnO2 thin films prepared by flash evaporation technique. Int. J. ChemTech Res. 6(3), 1933–1935 (2014)

    Google Scholar 

  27. A. Bouaine, N. Brihi, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, A. Dinia, Structural, optical, and magnetic properties of Co-doped SnO2 powders synthesized by the coprecipitation technique. J. Phys. Chem. 111(7), 2924–2928 (2007)

    Google Scholar 

  28. J. Divya, A. Pramothkumar, S.J. Gnanamuthu, D.B. Victoria, Structural, optical, electrical and magnetic properties of Cu and Ni doped SnO2 nanoparticles prepared via Co-precipitation approach. Phys. B: Condens. Matter. 588, 412169 (2020)

    Article  Google Scholar 

  29. M.A. Basyooni, Y.R. Eker, M. Yilmaz, Structural, optical, electrical and room temperature gas sensing characterizations of spin coated multilayer cobalt-doped tin oxide thin films. Superlattice Micro 140, 106465 (2020)

    Article  Google Scholar 

  30. S. Nilavazhagan, S. Muthukumaran, Investigation of optical and structural properties of Fe, Cu co-doped SnO2 nanoparticles. Superlattice Micro 83, 507–520 (2015)

    Article  ADS  Google Scholar 

  31. S. Bhuvana, H.B. Ramalingam, G. Thilakavathi, K. Vadivel, Structural, optical and magnetic properties of (Ni-Mn) co-doped tin oxide nanoparticles. Mater Technol. 32, 305–309 (2017)

    Article  Google Scholar 

  32. S. Mehraj, M. Shahnawaze Ansari, Alimuddin, Structural, electrical and magnetic properties of (Fe, Co) co-doped SnO2 diluted magnetic semiconductor nanostructures. Phys. E. 65, 84–92 (2015)

    Article  Google Scholar 

  33. P.V. Reddy, S.V. Reddy, B.S. Reddy, Synthesis and properties of (Fe, Al) codoped SnO2 nanoparticles. Mater Today: Proc. 3, 1752–1761 (2016)

    Google Scholar 

  34. N. Houaidji, M. Ajili, B. Chouial, N.T. Kamoun, First investigation of structural and optoelectronic properties of F and Ni co-doped SnO2 sprayed thin films. Optik 208, 164026 (2020)

    Article  ADS  Google Scholar 

  35. N. Ahmad, S. Khan, Effect of (Mn-Co) co-doping on the structural, morphological, optical, photoluminescence and electrical properties of SnO2. J. Alloys Compd. 720, 502–509 (2017)

    Article  Google Scholar 

  36. M. Duhan, N. Kumar, A. Gupta, A. Singh, H. Kaur, Enhanced room temperature ferromagnetism in Cr and Fe co-doped SnO2 nanoparticles synthesized by sol-gel method. Vacuum 181, 109635 (2020)

    Article  ADS  Google Scholar 

  37. R. Ramarajan, M. Kovendhan, K. Thangaraju, D.P. Joseph, R.R. Babu, V. Elumalai, Enhanced optical transparency and electrical conductivity of Ba and Sb co-doped SnO2 thin films. J. Alloy Compd. 823, 153709 (2020)

    Article  Google Scholar 

  38. J. Divya, A. Pramothkumar, H.J.L. Hilary, P.J. Jayanthi, P.C. Jobe brabakar, Impact of copper (Cu) and iron (Fe) co-doping on structural, optical, magnetic and electrical properties of tin oxide (SnO2) nanoparticles for optoelectronics applications. J Mater Sci: Mater. Electron. 32, 16755–16785 (2021)

    Google Scholar 

  39. N. Lavanya, C. Sekar, E. Fazio, F. Neri, S.G. Leonardi, G. Neri, Development of a selective hydrogen leak sensor based on chemically doped SnO2 for automotive applications. Int. J. Hydrog. Energy. 42(15), 10645–10655 (2017)

    Article  Google Scholar 

  40. S. Zulfiqar, Z. Iqbal, J. Lü, Zn-Cu-codoped SnO2 nanoparticles: structural, optical, and ferromagnetic behaviors. Chin. Phys. B. 26, 126104 (2017)

    Article  ADS  Google Scholar 

  41. M. Ashokkumar, S. Muthukumaran, Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO NPs by co-precipitation method. Opt. Mater. 37, 671–678 (2014)

    Article  ADS  Google Scholar 

  42. B. Babu, A.N. Kadam, R.V.S.S.N. Ravikumar, C. Byon, Enhanced visible light photocatalytic activity of Cu-doped SnO2 quantum dots by solution combustion synthesis. J. Alloy Compd. 703, 330–336 (2017)

    Article  Google Scholar 

  43. A. Abdelkrim, S. Rahmane, O. Abdelouahab, N. Abdelmalek, G. Brahim, Effect of solution concentration on the structural, optical and electrical properties of SnO2 thin films prepared by spray pyrolysis. Optik 127, 2653–2658 (2016)

    Article  ADS  Google Scholar 

  44. P.K. Sharma, R.K. Dutta, A.C. Pandey, Effect of nickel doping concentration on structural and magnetic properties of ultrafine diluted magnetic semiconductor ZnO nanoparticles. J. Magn. Magn. 321(20), 3457–3461 (2009)

    Article  ADS  Google Scholar 

  45. S. Thanikaikarasan, K. Sundaram, T. Mahalingam, S. Velumani, J.K. Rhee, Electrodeposition and characterization of Fe doped CdSe thin films from aqueous solution. Mater. Sci. Eng. 174(1–3), 242–248 (2010)

    Article  Google Scholar 

  46. E.T. Seid, F.B. Dejene, Z.N. Urgessa, J.R. Botha, Refluxed sol–gel synthesized ZnO nanopowder with variable zinc precursor concentration. Appl. Phys. A 124(11), 738 (2018)

    Article  ADS  Google Scholar 

  47. B. Rajesh Kumar, B. Hymavathi, X-ray peak profile analysis of solid-state sintered alumina doped zinc oxide ceramics by Williamson-Hall and size-strain plot methods. J. Asian Ceram. Soc. 5(2), 94–103 (2017)

    Article  Google Scholar 

  48. P.V. Reddy, S.V. Reddy, B.S. Reddy, Synthesis and properties of (Fe, Al) co-doped SnO2 nanoparticles. Mater. Today: Proc. 3(6), 1752–1761 (2016). (Eram Soc .5: 94–103)

    MathSciNet  Google Scholar 

  49. N. Sergent, P. Gélin, L. Périer-Camby, H. Praliaud, G. Thomas, Preparation and characterisation of high surface area stannic oxides: structural, textural and semiconducting properties. Sensor Actuat. B- Chem. 84, 176–188 (2002)

    Article  Google Scholar 

  50. N. Ahmad, S. Khan, Effect of (Mn-Co) co-doping on the structural, morphological, optical, photoluminescence and electrical properties of SnO2. J. Alloy Compd. 720, 502–509 (2017)

    Article  Google Scholar 

  51. M. Shu, X. Li, Electrospun MnxCo0.5−xSn0.5O2 and SnO2 porous nanofibers and nanoparticles as anode materials for lithium-ion battery. J Nanopart Res. 21, 179 (2019)

    Article  Google Scholar 

  52. F.G. Hone, F.B. Dejene, L.F. Koao, Tailoring optical and electrical properties of ternary Pb1− xCoxS thin films synthesized from a combination of two complexing agents. Indian J. Phys 95(9), 1763–1773 (2021)

    Article  ADS  Google Scholar 

  53. K.J. Kim, Y.R. Park, Spectroscopic ellipsometry study of optical transitions in Zn 1–x Cox O alloys. Appl. Phys. Lett. 81(8), 1420–1422 (2002)

    Article  ADS  Google Scholar 

  54. A.G. Habte, F.G. Hone, F.B. Dejene, Zn doping effect on the properties of SnO2 nanostructure by co-precipitation technique. Appl. Phys. A 125, 402 (2019)

    Article  ADS  Google Scholar 

  55. P. Baraneedharan, S.I. Hussain, V.P. Dinesh, C. Siva, P. Biji, M. Sivakumar, Lattice doped Zn–SnO2 nanospheres: a systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties. Appl. Surf. Sci. 357, 1511–1521 (2015)

    Article  ADS  Google Scholar 

  56. S. Suwanboon, T. Ratana, T. Ratana, Effects of Al and Mn dopant on structural and optical properties of ZnO thin film prepared by sol-gel route. Walailak J. Sci. Technol. 4(1), 111–121 (2007)

    Google Scholar 

  57. S. Bansal, D.K. Pandya, S.C. Kashyap, D. Haranath, Growth ambient dependence of defects, structural disorder and photoluminescence in SnO2 films deposited by reactive magnetron sputtering. J. Alloys Compd. 583, 186–190 (2014)

    Article  Google Scholar 

  58. A. Kar, A. Patra, Optical and electrical properties of Eu3+-doped SnO2 nanocrystals. J. Phys. Chem. C. 113(11), 4375–4380 (2009)

    Article  Google Scholar 

  59. E.J. Lee, C. Ribeiro, T.R. Giraldi, E. Longo, E.R. Leite, J.A. Varela, Photoluminescence in quantum-confined SnO2 nanocrystals: evidence of free exciton decay. Appl. Phys. Lett. 84(10), 1745–1747 (2004)

    Article  ADS  Google Scholar 

  60. W.S.F. GuF, M.K. Lü, X.F. Cheng, S.W. Liu, G.J. Zhou, D.R. Yuan, Luminescence of SnO2 thin films prepared by spin-coating method. J. Cryst. Growth 262(1–4), 182–185 (2004)

    ADS  Google Scholar 

  61. F. Gu, S.F. Wang, M.K. Lü, G.J. Zhou, D. Xu, D.R. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol− gel method. J. Phys. Chem 108(24), 8119–8123 (2004)

    Article  Google Scholar 

  62. A.S.H. Hameed, C. Karthikeyan, A.P. Ahamed, N. Thajuddin, N.S. Alharbi, S.A. Alharbi, G. Ravi, In vitro antibacterial activity of ZnO and Nd- doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci. Rep. 6(1), 1–11 (2016)

    Article  Google Scholar 

  63. R.K. Mishra, A. Kushwaha, P.P. Sahay, Influence of Cu doping on the structural, photoluminescence and formaldehyde sensing properties of SnO2 nanoparticles. RSC Adv. 4(8), 3904–3912 (2014)

    Article  ADS  Google Scholar 

  64. C.T. Lee, Fabrication methods and luminescent properties of ZnO materials for light-emitting diodes. Mater. 3(4), 2218–2259 (2010)

    Article  Google Scholar 

  65. I. AlivovY, M.V. Chukichev, V.A. Nikitenko, Green luminescence band of zinc oxide films copper-doped by thermal diffusion. J. Semicond. 38(1), 31–35 (2004)

    Article  ADS  Google Scholar 

  66. F.H. Leiter, H.R. Alves, A. Hofstaetter, D.M. Hofmann, B.K. Meyer, Rapid research notes-the oxygen vacancy as the origin of a green emission in undoped ZnO. Phys. Status Solidi. 226(1), R4 (2001)

    Article  ADS  Google Scholar 

  67. A. Rahmati, A.B. Sirgani, M. Molaei, M. Karimipour, Cu-doped ZnO nanoparticles synthesized by simple co-precipitation route. Eur Phys J Plus. 129, 250 (2014)

    Article  Google Scholar 

  68. N. Shanmugam, T. Sathya, G. Viruthagiri, C. Kalyanasundaram, R. Gobi, S. Ragupathy, Photocatalytic degradation of brilliant green using undoped and Zn doped SnO2 nanoparticles under sunlight irradiation. Appl. Surf. Sci. 360, 283–290 (2016)

    Article  ADS  Google Scholar 

  69. D. Das, R. Banerjee, Properties of electron-beam-evaporated tin oxide films. Thin Solid Films 147(3), 321–331 (1987)

    Article  ADS  Google Scholar 

  70. J. Bruneaux, H. Cachet, M. Froment, A. Messad, Correlation between structural and electrical properties of sprayed tin oxide films with and without fluorine doping. Thin Solid Films 197(1–2), 129–142 (1991)

    Article  ADS  Google Scholar 

  71. H. Sefardjella, B. Boudjema, A. Kabir, G. Schmerber, Structural and photoluminescence properties of SnO2 obtained by thermal oxidation of evaporated Sn thin films. Curr. Appl. Phys. 13(9), 1971–1974 (2013)

    Article  ADS  Google Scholar 

  72. J.H. Bang, N. Lee, A. Mirzaei, M.S. Choi, H.G. Na, C. Jin, H.W. Kim, Effect of microwave irradiation on the electrical and optical properties of SnO2 thin films. Ceram Int. 45(6), 7723–7729 (2019)

    Article  Google Scholar 

  73. F. Yakuphanoglu, Electrical conductivity, Seebeck coefficient and optical properties of SnO2 film deposited on ITO by dip coating. J. Alloys Compd. 470(1–2), 55–59 (2009)

    Article  Google Scholar 

  74. J.L.G. Fierro, Metal oxides: chemistry and applications. Mater. Today. 8(12), 59 (2005)

    Article  Google Scholar 

  75. L. Soussi, T. Garmim, O. Karzazi, A. Rmili, A. El Bachiri, A. Louardi, H. Erguig, Effect of (Co, Fe, Ni) doping on structural, optical and electrical properties of sprayed SnO2 thin film. Surf. Interfaces. 19, 100467 (2020)

    Article  Google Scholar 

  76. F.G. Hone, N.A. Tegegne, F.B. Dejene, D.M. Andoshe, Nanofiber cadmium oxide thin films prepared from ethanolamine complexing agent by solution growth method. Optik 243, 167402 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The corresponding author Dr Fekadu Gahsw is acknowledge the support from Addis Ababa University thematic research project (Grant Ref. LT/PY-242/2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fekadu Gashaw Hone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lachore, W.L., Andoshe, D.M., Hone, F.G. et al. Structural, optical and electrical properties of copper (Cu) and [nickel (Ni), copper]: co-doped SnO2 nanoparticles prepared by sol–gel method. Appl. Phys. A 128, 515 (2022). https://doi.org/10.1007/s00339-022-05655-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05655-1

Keywords

Navigation