Skip to main content

Advertisement

Log in

Synthesis of nano-diamond-like carbon for protective optical window coating applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study reports the fabrication of carbon using ions of carbon generated by high temperature, high density and extremely non-equilibrium argon plasma produced in modified dense plasma focus device. Carbon is deposited using two bursts of focussed plasma on n-type silicon substrates kept at a temperature of 20 (room temperature) and 130°C. The formation of nano-diamond-like carbon (nano-DLC) is observed at substrate temperature of 130°C. The samples deposited at different substrate temperatures are found to have amorphous in nature as observed from X-ray diffraction studies. These amorphous samples of carbon and nano-DLC possess nanostructures of average size ~27 and ~10 nm for 20 and 130°C substrate temperature, respectively, as obtained from atomic force microscopy and scanning electron microscopy studies. The possibility of formation of nano-DLC was analysed using Raman measurements. Peaks related to D and G band of graphitic carbon are observed in Raman spectra of both the samples. However, the samples grown at substrate temperature of 130°C show peaks related to nano-grain of diamond in Raman spectra, indicating high sp3 content, thereby confirming the formation of nano-DLC. The hardness measurement reveals the maximum value of hardness ~45.5 GPa for nano-DLC sample, which reconfirms that sample is of nano-DLC nature. The nano-DLC are found to have band gap of ~2.45 eV, which makes the nano-DLC a potential candidate for applications in protective optical window coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Robertson J 2002 Mater. Sci. Eng. R 37 129

    Article  Google Scholar 

  2. Swec D M and Mirtich M J 1989 NASA Tech. Memo. 74 102111

  3. Ferrari A C 2004 Surf. Coat. Technol. 180–181 190

    Article  Google Scholar 

  4. Kano M 2014 Tribol. Online 9 135

    Article  Google Scholar 

  5. Kano M 2006 New Diamond Frontier Carbon Technol. 16 201

    CAS  Google Scholar 

  6. Roy R K and Lee K R 2007 J. Biomed. Mater. Res. Part B: Appl. Biomater. 83B 72

  7. Luo J K, Fu Y Q, Le H R, Williams J A, Spearing S M and Milne W I 2007 J. Micromech. Microeng. 17 S147

    Article  CAS  Google Scholar 

  8. Aisenberg S and Chabot R 1971 J. Appl. Phys. 42 2953

    Article  CAS  Google Scholar 

  9. Spencer E G, Schmidt P H, Joy D C and Sansalone F J 1976 Appl. Phys. Lett. 29 118

    Article  CAS  Google Scholar 

  10. Savvides N 1986 J. Appl. Phys. 59 4133

    Article  CAS  Google Scholar 

  11. Weissmantel C 1982 Thin Solid Films 92 55

    Article  CAS  Google Scholar 

  12. Davanloo F, Juengerman E M, Jander D R, Lee T J and Collins C B 1990 J. Appl. Phys. 67 2081

    Article  CAS  Google Scholar 

  13. Dayal S, Kumar S, Dwivedi N, Chockalingam S, Rauthan C M S and Panwar O S 2013 Met. Mater. Int. 19 405

    Article  CAS  Google Scholar 

  14. Anders A (ed) 2000 Handbook of plasma immersion ion implantation and deposition (New York: Wiley) 8

    Google Scholar 

  15. Mangla O and Srivastava M P 2013 J. Mater. Sci. 48 304

    Article  CAS  Google Scholar 

  16. Mangla O, Srivastava A, Malhotra Y and Ostrikov K 2014 J. Mater. Sci. 49 1594

    Article  CAS  Google Scholar 

  17. Mangla O, Roy S and Ostrikov K 2016 Nanomaterials 6 4

    Article  Google Scholar 

  18. Srivastava M P, Roy S and Kant C R 2009 Patent no. 232763

  19. Mather J W 1964 Phys. Fluids 7 S28

    Article  Google Scholar 

  20. Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095

    Article  CAS  Google Scholar 

  21. Robertson J 1996 Phys. Rev. B 53 16302

    Article  CAS  Google Scholar 

  22. McCulloch D G, McKenzie D R and Goringe C M 2000 Phys. Rev. B 61 2349

    Article  CAS  Google Scholar 

  23. Jungnickel G, Frauenheim T, Proezag D, Blaudeck P, Stephan U and Newport R J 1994 Phys. Rev. B 50 6709

    Article  CAS  Google Scholar 

  24. Oppedisano C and Tagliaferro A 1999 Appl. Phys. Lett. 75 3650

    Article  CAS  Google Scholar 

  25. Dasgupta D, Demichelis F, Pirri C F and Tagliaferro A 1991 Phys. Rev. B 43 2131

    Article  CAS  Google Scholar 

  26. Fanchini G, Tagliaferro A, Dowling D P, Donnelly K, McConnell M L, Flood R et al 2000 Phys. Rev. B 61 5002

    Article  CAS  Google Scholar 

  27. Bouzerar R, Amory C, Zeinery A, Benlahsen M, Racine B, Durand-Drouhin O et al 2001 J. Non-Cryst. Solids 281 171

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to University Science Instrumentation Center (USIC), University of Delhi, for providing facilities to characterize the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onkar Mangla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangla, O., Roy, S. Synthesis of nano-diamond-like carbon for protective optical window coating applications. Bull Mater Sci 44, 273 (2021). https://doi.org/10.1007/s12034-021-02561-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02561-9

Keywords

Navigation