Skip to main content

Encapsulation of CNT Films on Silicon Wafer by DLC Synthesized by PECVD for Application as a Thermal Interface Material

  • Conference paper
  • First Online:
Advances in Micro and Nano Manufacturing and Surface Engineering

Abstract

This research is based on the synthesis of a carbon–carbon multifunctional thin film composite. This nanocomposite involves synthesizing a thin film of diamond-like carbon (DLC) coated on nearly vertically aligned carbon nanotubes using a radio frequency plasma enhanced chemical vapour deposition (RF-PECVD). The carbon nanotubes (CNTs) are synthesized on a silicon substrate using RF-PECVD. DLC is deposited on CNTs for different flow rates of acetylene gas. Studies on morphology, structure of the DLC/CNT nanocomposite is carried out using scanning electron microscope (SEM) and transmission electron microscope (TEM). Raman spectroscopy is used to estimate the sp3 and sp2 content of the 2D nanomaterial. Ansys software simulations are carried out to derive thermal conductivity and heat flux of the nano sandwich into consideration and have values of about 73.59 W/mK and 245 W/mm2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  2. Meyyappan M, Delzeit L, Cassell A, Hash D (2003) Carbon nanotube growth by PECVD: A review. Plasma Sources Sci Technol. https://doi.org/10.1088/0963-0252/12/2/312

    Article  Google Scholar 

  3. Sato, Hideki & Hata K Growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. New Diam Front Carbon Technol 16:163–176

    Google Scholar 

  4. Szabó A, Perri C, Csató A et al (2010) Synthesis methods of carbon nanotubes and related materials. Materials (Basel) 3:3092–3140. https://doi.org/10.3390/ma3053092

    Article  Google Scholar 

  5. Yabe Y, Ohtake Y, Ishitobi T, et al (2004) Synthesis of well-aligned carbon nanotubes by radio frequency plasma enhanced CVD method. 13:1292–1295. https://doi.org/10.1016/j.diamond.2003.11.067

  6. Hone J, Llaguno MC, Biercuk MJ et al (2002) Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A Mater Sci Process 74:339–343. https://doi.org/10.1007/s003390201277

    Article  Google Scholar 

  7. Tailleur A, Achour A, Djouadi MA et al (2012) PECVD low temperature synthesis of carbon nanotubes coated with aluminum nitride. Surf Coatings Technol. https://doi.org/10.1016/j.surfcoat.2011.09.048

    Article  Google Scholar 

  8. Salazar PF, Stephens ST, Kazim AH et al (2014) Enhanced thermo-electrochemical power using carbon nanotube additives in ionic liquid redox electrolytes. J Mater Chem A 2:20676–20682. https://doi.org/10.1039/c4ta04749d

    Article  Google Scholar 

  9. Taphouse JH, Smith OL, Marder SR, Cola BA (2014) A pyrenylpropyl phosphonic acid surface modifier for mitigating the thermal resistance of carbon nanotube contacts. Adv Funct Mater 24:465–471. https://doi.org/10.1002/adfm.201301714

    Article  Google Scholar 

  10. Hu R, Cola BA, Haram N et al (2010) Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett 10:838–846. https://doi.org/10.1021/nl903267n

    Article  Google Scholar 

  11. Kaur S, Raravikar N, Helms BA et al (2014) Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nat Commun 5:1–8. https://doi.org/10.1038/ncomms4082

    Article  Google Scholar 

  12. Cola BA, Xu J, Cheng C, et al (2007) Photoacoustic characterization of carbon nanotube array thermal interfaces. J Appl Phys 101. https://doi.org/10.1063/1.2510998

  13. Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng R Reports 37:129–281. https://doi.org/10.1016/S0927-796X(02)00005-0

    Article  Google Scholar 

  14. Casiraghi C, Ferrari AC, Robertson J (2005) Raman spectroscopy of hydrogenated amorphous carbons. Phys Rev B-Condens Matter Mater Phys 72:1–14. https://doi.org/10.1103/PhysRevB.72.085401

    Article  Google Scholar 

  15. Kinoshita H, Ippei I, Sakai H, Ohmae N (2007) Synthesis and mechanical properties of carbon nanotube/diamond-like carbon composite films 16:1940–1944. https://doi.org/10.1016/j.diamond.2007.08.004

    Article  Google Scholar 

  16. Hea F, Lib Z, Lib C, et al Enhanced Field Emission properties of Carbon Nanotubes by coating Diamond-like Carbon layer, 3–5

    Google Scholar 

  17. Li Y, Yan X, Wei J et al (2020) Dependence of optimum thickness of Ultrathin Diamond-like carbon coatings over carbon nanotubes on geometric field enhancement factor. ACS Appl Electron Mater 2:84–92. https://doi.org/10.1021/ACSAELM.9B00561

    Article  Google Scholar 

  18. Zanin H, May PW, Hamanaka MHMO, Corat EJ (2013) Field Emission from Hybrid Diamond-like Carbon and Carbon Nanotube Composite Structures

    Google Scholar 

  19. Nylander A, Hansson J, Nilsson T et al (2021) Degradation of carbon nanotube array thermal interface materials through thermal aging: Effects of bonding, array height, and catalyst oxidation. ACS Appl Mater Interfaces 13:30992–31000. https://doi.org/10.1021/ACSAMI.1C05685/SUPPL_FILE/AM1C05685_SI_001.PDF

    Article  Google Scholar 

  20. Nylander A, Hansson J, Samani MK et al (2019) Reliability investigation of a carbon nanotube array thermal interface material. Energies 12:1–10. https://doi.org/10.3390/en12112080

    Article  Google Scholar 

  21. Mohamed M, Omar MN, Ishak MSA et al (2020) Comparison between CNT Thermal Interface Materials with Graphene Thermal Interface Material in Term of Thermal Conductivity. Mater Sci Forum 1010:160–165. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.1010.160

    Article  Google Scholar 

  22. Ping L, Hou PX, Liu C, Cheng HM (2019) Vertically aligned carbon nanotube arrays as a thermal interface material. APL Mater 7:020902. https://doi.org/10.1063/1.5083868

    Article  Google Scholar 

  23. Zhang Q, Calderon A, Ebbing BR, et al (2020) Thermal properties enhancement of vertically aligned carbon nanotubes-based metal nanocomposites as thermal interface materials. Front Mater 7:359. https://doi.org/10.3389/FMATS.2020.572956/BIBTEX

  24. Krishna A, Gecil Evangeline T, Aravinda LS et al (2020) Synthesis and thermal simulations of novel encapsulated CNT multifunctional thin-film based nanomaterial of SiO2-CNT and TiN-CNT by PVD and PECVD techniques for thermal applications. Diam Relat Mater 109:108029. https://doi.org/10.1016/J.DIAMOND.2020.108029

    Article  Google Scholar 

  25. Krishna A, Aravinda LS, Murugan A, et al (2021) A study on wafer scalable, industrially applicable CNT based nanocomposites of Al-CNT, Cu-CNT, Ti-CNT, and Ni-CNT as thermal interface materials synthesised by thin film techniques. Surf Coatings Technol 127926. https://doi.org/10.1016/J.SURFCOAT.2021.127926

  26. Varade A, Niranjan Reddy K, Sasen D, et al (2014) Detailed Raman study of DLC coating on Si (100) made by RF-PECVD. In: Procedia Engineering

    Google Scholar 

  27. Varade A, Krishna A, Reddy KN et al (2014) Diamond-like carbon coating made by RF plasma enhanced chemical vapour deposition for protective antireflective coatings on Germanium. Procedia Mater Sci 5:1015–1019. https://doi.org/10.1016/j.mspro.2014.07.390

    Article  Google Scholar 

  28. Niranjan Reddy K, Varade A, Krishna A, et al (2014) Double side coating of DLC on silicon by RF-PECVD for AR application. In: Procedia Engineering

    Google Scholar 

  29. Ankit K, Varade A, Reddy N et al (2017) Synthesis of high hardness, low COF diamond-like carbon using RF-PECVD at room temperature and evaluating its structure using electron microscopy. Diam Relat Mater 80:108–112. https://doi.org/10.1016/j.diamond.2017.09.005

    Article  Google Scholar 

  30. Ankit K, Varade A, Niranjan Reddy K et al (2017) Synthesis of high hardness IR optical coating using diamond-like carbon by PECVD at room temperature. Diam Relat Mater 78:39–43. https://doi.org/10.1016/j.diamond.2017.07.008

    Article  Google Scholar 

  31. Kozlov ME, Yase K, Minami N et al (1996) Observation of diamond crystallites in thin films prepared by laser ablation of hard fullerene-based carbon. J Phys D Appl Phys 29:929–933. https://doi.org/10.1088/0022-3727/29/3/062

    Article  Google Scholar 

  32. Sinnott SB, Andrews R, Qian D et al (1999) Model of carbon nanotube growth through chemical vapor deposition. Chem Phys Lett 315:25–30. https://doi.org/10.1016/S0009-2614(99)01216-6

    Article  Google Scholar 

  33. Danafar F, Fakhru’l-Razi A, Salleh MAM, Biak DRA (2009) Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes-A review. Chem Eng J 155:37–48. https://doi.org/10.1016/j.cej.2009.07.052

  34. Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond like carbon, and nanodiamond. Philos Trans R Soc, A 362:2477–2512. https://doi.org/10.1098/rsta.2004.1452

    Article  Google Scholar 

  35. Ferrari AC (2002) Determination of bonding in diamond-like carbon by Raman spectroscopy. Diam Relat Mater 11:1053–1061. https://doi.org/10.1016/S0925-9635(01)00730-0

    Article  Google Scholar 

  36. Costa S, Borowiak-Palen E, Kruszyñska M et al (2008) Characterization of carbon nanotubes by Raman spectroscopy. Mater Sci 26:1–9. https://doi.org/10.1155/2010/603978

    Article  Google Scholar 

  37. S. Kurtz, Tallant, R. Simpson, K. McCarty, L Bemardez DD and PM (1996) Diamond and Diamond-Like Carbon Films. Adv Electronic Appl 46

    Google Scholar 

  38. Kumanek B, Janas D (2019) Thermal conductivity of carbon nanotube networks: a review. J Mater Sci 54:7397–7427. https://doi.org/10.1007/s10853-019-03368-0

    Article  Google Scholar 

  39. Panzer MA, Zhang G, Mann D, et al (2008) Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J Heat Transfer 130. https://doi.org/10.1115/1.2885159

  40. Shamsa M, Liu WL, Balandin AA et al (2006) Thermal conductivity of diamond-like carbon films. Appl Phys Lett 89:1–3. https://doi.org/10.1063/1.2362601

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Murugan A, Mrs. Sarmistha Dhan, and Mr. Basavaraju, CMTI for assisting in characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Ankit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ankit, K. et al. (2023). Encapsulation of CNT Films on Silicon Wafer by DLC Synthesized by PECVD for Application as a Thermal Interface Material. In: Bhattacharyya, B., Mathew, J., Saravanakumar, N., Rajeshkumar, G. (eds) Advances in Micro and Nano Manufacturing and Surface Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-4571-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4571-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4570-0

  • Online ISBN: 978-981-19-4571-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics