Skip to main content
Log in

Influence of ionic conductivity in polymer-dispersed antiferroelectric liquid crystals

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Dielectric properties of both in-phase and anti-phase motions of polymer-dispersed antiferroelectric liquid crystals (PDAFLC) were changed because of the influence of charge density accumulated on smectic layers and its gradient variation. The elastic constant as well as dielectric parameters were changed because of the coupling between charge density variation and the physical properties of polymer constituents such as free volumes, cross-link chains. The theoretical model provides a clear influence of charge density in PDAFLC which modified the dielectric parameters, such as dielectric constant, dielectric loss, dielectric strength, etc. depending on the variation of charge density as well as polymeric parameters for both in-phase and anti-phase motions. The obtained theoretical basis is discussed by considering the results with the experimental findings and the theoretical deduced equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Takezoe H, Gorecka E and Cepic M 2010 Rev. Mod. Phys. 82 897

    Article  CAS  Google Scholar 

  2. Chandani A D L, Ouchi Y, Takezoe H, Fukuda A, Terashima K, Furukawa K et al 1989 Jpn. J. Appl. Phys. 28 L1261

    Article  CAS  Google Scholar 

  3. Roy A and Madhusudana N V 1998 Eur. Phys. Lett. 41 501

    Article  CAS  Google Scholar 

  4. Furue H, Kuramochi H and Kakinuma D 2008 Jpn. J. Appl. Phys. 47 7638

    Article  CAS  Google Scholar 

  5. Chandani A D L, Gorecka E, Ouchi Y, Takezoe H and Fukuda A 1989 Jpn. J. Appl. Phys. 28 L1265

    Article  CAS  Google Scholar 

  6. Lagerwall S T 1999 Ferroelectric and antiferroelectric liquid crystals (Weinheim: Wiley-VCH)

    Book  Google Scholar 

  7. Hiraoka K, Chandani A D L, Gorecka E, Ouchi Y, Takezoe H and Fukuda A 1990 Jpn. J. Appl. Phys. 29 L1473

    Article  CAS  Google Scholar 

  8. Kuczynski W, Dardas D and Nowicka K 2009 Phase Transit. 82 444

    Article  CAS  Google Scholar 

  9. Uchiyama Y, Moritake H, Ozaki M, Yoshino K, Taniguchi H, Satoh K et al 1993 Jpn. J. Appl. Phys. 32 4335

    Article  CAS  Google Scholar 

  10. Bibonne F, Parneix J P, Isaert N, Joly G, Nguyen H T, Bouchta A et al 1995 Mol. Cryst. Liq. Cryst. 263 27

    Article  Google Scholar 

  11. Hiraoka K, Takezoe H and Fukuda A 1993 Ferroelectrics 147 13

    Article  CAS  Google Scholar 

  12. Hiller S, Pikin S A, Haase W, Goodby J W and Nishiyama I 1994 Jpn. J. Appl. Phys. 33 L1170

    Article  CAS  Google Scholar 

  13. Buivydas M, Gouda F, Lagerwall S T and Stebler B 1995 Liq. Cryst. 18 879

    Article  CAS  Google Scholar 

  14. Buivydas M, Gouda F, Andersson G, Lagerwall S T, Stebler B, Bomelburg J et al 1997 Liq. Cryst. 23 723

    Article  CAS  Google Scholar 

  15. Hou J, Schacht J, Giesselmann F and Zugenmaier P 1997 Liq. Cryst. 22 409

    Article  CAS  Google Scholar 

  16. Panarin Yu P, Kalinovskaya O and Vij J K 1998 Liq. Cryst. 25 241

    Article  CAS  Google Scholar 

  17. Kimura Y and Isono H 2004 Ferroelectrics 310 87

    Article  CAS  Google Scholar 

  18. Kimura Y, Hayakawa R, Okabe N and Suzuki Y 1996 Phys. Rev. E 53 6080

    Article  CAS  Google Scholar 

  19. Nayek P, Ghosh S, Kundu S, Roy S, Pal Majumder T, Bennis N et al 2009 J. Phys. D: Appl. Phys. 42 225504

  20. Srivastava A K, Agrawal V K, Dabrowski R, Oton J M and Dhar R 2005 J. Appl. Phys. 98 013543

  21. Parry-Jones L A and Elston S J 2002 J. Appl. Phys. 92 449

    Article  CAS  Google Scholar 

  22. Parry-Jones L A and Elston S J 2001 Phys. Rev. E 63 R050701

    Article  Google Scholar 

  23. Brown C V and Jones J C 1999 J. Appl. Phys. 86 3333

    Article  CAS  Google Scholar 

  24. Das D, Lahiri T and Pal Majumder T 2011 Physica B 406 1577; Corrigendum: Das D, Lahiri T and Pal Majumder T 2013 Physica B 414 120

  25. Das D, Pal Majumder T and Ghosh N K 2014 Physica B 436 41

    Article  CAS  Google Scholar 

  26. Das D and Pal Majumder T 2015 Sci. Lett. J. 4 99

    Google Scholar 

  27. Das D, Mandal P and Pal Majumder T 2015 Sci. Lett. J. 4 194

    Google Scholar 

  28. Das D, Mandal P and Pal Majumder T 2015 Braz. J. Phys. 45 280

    Article  CAS  Google Scholar 

  29. Mandal P, Das D and Pal Majumder T 2016 J. Mol. Liq. 215 170

    Article  CAS  Google Scholar 

  30. Das D, Mandal P and Pal Majumder T 2017 J. Pure Appl. Indus. Phys. 7 175

    Google Scholar 

  31. Pal Majumder T, Mandal P and Das D 2017 J. Pure Appl. Indus. Phys. 7 436

    Google Scholar 

  32. Mandal P, Das D and Pal Majumder T 2018 Int. J. Curr. Adv. Res. 7 9402

    Google Scholar 

  33. Klosowicz S J, Czuprynski K L and Piecek W 2000 Mol. Cryst. Liq. Cryst. 351 343

    Article  CAS  Google Scholar 

  34. Klosowicz S J, Piecek W, Dabrowski R and Perkowski P 2004 Mol. Cryst. Liq. Cryst. 422 21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Pal Majumder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, T.P. Influence of ionic conductivity in polymer-dispersed antiferroelectric liquid crystals. Bull Mater Sci 44, 282 (2021). https://doi.org/10.1007/s12034-021-02557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02557-5

Keywords

Navigation