Skip to main content
Log in

Effect of Y ions incorporation on structural, morphological and magnetic properties of Bi 1x Dy x FeO 3 for ferromagnetic applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Y ions incorporation effect on structural, ferroelectric and ferromagnetic properties of Bi1−xDyxFeO3 (x = 0.00, 0.05, 0.10, 0.15 and 0.20) has been elaborated by solid-state reaction method. The beam of Y ions (500 keV) at a fluence of 3 × 1012 ions cm−2 was exposed in studied samples. The X-ray diffraction technique and Rietveld refinement indicate the rhombohedral polycrystalline structure. The FESEMx analysis show dense grains uniformly distributed on sample surface and decrease in grain size by decreasing the Dy concentration. The bonding nature and chemical composition have been studied by X-ray photoelectron spectroscopy. The coexistence of ferromagnetic and ferroelectric orderings has been observed at room temperature. The polarization (10.50 μC cm−2) and ferromagnetism is maximum at 15% Dy concentration and decreases with further increase in Dy contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Fiebig M 2005 J. Phys. D: Appl. Phys. 38 8

    Article  CAS  Google Scholar 

  2. Wang J, Neaton J, Zheng H, Nagarajan V, Ogale S, Liu B et al 2003 Science 299 5613

    Google Scholar 

  3. Stancu V, Dragoi C, Kuncser V, Schinteie G, Trupina L, Vasile E et al 2011 Thin Solid Films 519 19

    Article  CAS  Google Scholar 

  4. Troyanchuk I O, Karpinsky D V, Bushinsky M V, Mantytskaya O S, Tereshko N V and Shut V N 2011 J. Am. Ceram. Soc. 94 12

    Article  CAS  Google Scholar 

  5. Lotey G S and Verma N 2012 J. Nanopart. Res. 14 3

    Article  CAS  Google Scholar 

  6. Hill N A 2000 J. Phys. Chem. B 104 6694

    Article  CAS  Google Scholar 

  7. Khomskii D I 2006 J. Magn. Magn. Mater. 306 1

    Article  CAS  Google Scholar 

  8. Sosnowska I, Neumaier T P and Steichele E 1982 J. Phys. C: Solid State Phys. 15 23

    Article  Google Scholar 

  9. Kaczmarek W, Pajak Z and Połomska M 1975 Solid State Commun. 17 7

    Google Scholar 

  10. Kubel F and Schmid H 1990 Acta Crystallogr. Sect. B 46 6

    Article  Google Scholar 

  11. Moreau J M, Michel C, Gerson R and James W J 1971 J. Phys. Chem. Solids 32 6

    Article  Google Scholar 

  12. Dutta D P, Mandal B P, Naik R, Lawes G and Tyagi A K 2013 J. Phys. Chem. C 117 5

    Google Scholar 

  13. Sakar M, Balakumar S, Saravanan P and Bharathkumar S 2015 Nanoscale 7 24

    Article  CAS  Google Scholar 

  14. Madhu C, Bellakki M B and Manivannan V 2010 J. Mater. Eng. 17 131

    CAS  Google Scholar 

  15. Layek S, Saha S and Verma H 2013 AIP Adv. 3 3

    Article  CAS  Google Scholar 

  16. Durga T R, Ranjith R and Asthana S 2014 J. Appl. Phys. 115 12

    Google Scholar 

  17. Arora M, Sati P C, Chauhan S, Singh H, Yadav K, Chhoker S et al 2013 Mater. Lett. 96

  18. Chauhan S, Arora M, Sati P, Chhoker S, Katyal S and Kumar M 2013 Ceram. Int. 39 6

    Article  CAS  Google Scholar 

  19. Khomchenko V, Troyanchuk I, Többens D, Sikolenko V and Paixão J 2013 J. Phys. Condens. Matter 25 13

    Article  CAS  Google Scholar 

  20. Wei J, Haumont R, Jarrier R, Berhtet P and Dkhil B 2010 Appl. Phys. Lett. 96 10

    Google Scholar 

  21. Kumar M and Yadav K 2006 J. Appl. Phys. 100 7

    Google Scholar 

  22. Chandra P S, Arora M, Chauhan S, Chhoker S and Kumar M 2012 J. Appl. Phys. 112 9

    Google Scholar 

  23. Reetu, Agarwal A, Sanghi S and Ashima 2011 J. Appl. Phys. 110 7

  24. Anjum G, Kumar R, Mollah S, Shukla D, Kumar S and Lee C 2010 J. Appl. Phys. 107 10

    Article  CAS  Google Scholar 

  25. Agarwal A, Sanghi S and Ahlawat N 2012 J. Phys. D: Appl. Phys. 45 16

    Google Scholar 

  26. Durga T R and Asthana S 2014 J. Appl. Phys. 116 16

    Google Scholar 

  27. Basith M, Kurni O, Alam M, Sinha B and Ahmmad B 2014 J. Appl. Phys. 115 2

    Article  CAS  Google Scholar 

  28. Ahmmad B, Kanomata K, Koike K, Kubota S, Kato H, Hirose F et al 2016 J. Phys. D: Appl. Phys. 49 26

    Google Scholar 

  29. Dutta D P and Tyagi A 2018 Appl. Surf. Sci. 450

  30. Lennox R C, Price M C, Jamieson W, Jura M, Daoud-Aladine A, Murray C A et al 2014 J. Mater. Chem. C 2 17

    Article  Google Scholar 

  31. Lotey G S and Verma N 2013 J. Mater. Sci.: Mater. Electron. 24 10

    Google Scholar 

  32. Catalan G and Scott J F 2009 Adv. Mater. 21 24

    Article  CAS  Google Scholar 

  33. Chowdhury S S, Kamal A H M, Hossain R, Hasan M, Islam M F, Ahmmad B et al 2017 Ceram. Int. 43 12

    Article  CAS  Google Scholar 

  34. Xiao Z, Zhu J, Li Y, Luo W, Yu B, Fan L et al 2007 J. Phys. D: Appl. Phys. 40 18

    Google Scholar 

  35. Markna J, Parmar R, Rana D, Kumar R, Misra P, Kukreja L et al 2007 Nucl. Instrum. Meth. Phys. Res. B 256 2

    Article  CAS  Google Scholar 

  36. Avasthi D and Assmann W 2001 Curr. Sci. 25 1532

  37. Ogale S, Li Y, Rajeswari M, Riba L S, Ramesh R, Venkatesan T et al 2000 J. Appl. Phys. 87 9

    Article  Google Scholar 

  38. Shukla D, Kumar R, Mollah S, Choudhary R, Thakur P, Sharma S et al 2010 Phys. Rev. B 82 17

    Article  CAS  Google Scholar 

  39. Dash B, Dash P, Rath H, Mallick P, Biswal R, Kulriya P et al 2010 Indian J. Phys. 84 10

    Google Scholar 

  40. Pattanayak S, Choudhary R, Das P R and Shannigrahi S 2014 Ceram. Int. 40 6

    Article  CAS  Google Scholar 

  41. Kumar A, Sharma P and Varshney D 2015 J. Ceram. 4 292

  42. Gao W, Xing W, Yun Q, Chen J, Nie C and Zhao S 2015 J. Mater. Sci.: Mater. Electron. 26 4

    Google Scholar 

  43. Barbar S, Jangid S, Roy M and Chou F 2013 Ceram. Int. 39 5

    Article  CAS  Google Scholar 

  44. Xu J, Wang G, Wang H, Ding D and He Y 2009 Mater. Lett. 63 11

    Article  CAS  Google Scholar 

  45. Zhang S, Luo W, Wang D and Ma Y 2009 Mater. Lett. 21 63

    CAS  Google Scholar 

  46. Raghavan C, Kim J and Kim S 2014 Ceram. Int. 40 1

    Article  CAS  Google Scholar 

  47. Sharif S, Murtaza G, Meydan T, Williams P I, Cuenca J, Hashimdeen S H et al 2018 Thin Solid Films 662 83

  48. Zhang X, Sui Y, Wang X, Wang Y and Wang Z 2010 J. Alloys Compd. 507 1

    Article  Google Scholar 

  49. Lü F C, Yin K, Fu K-X, Wang Y-N, Ren J and Xie Q 2017 Ceram. Int. 43 18

    Google Scholar 

  50. Qian F, Jiang J, Jiang D, Zhang W and Liu J 2009 J. Phys. D: Appl. Phys. 43 2

    Google Scholar 

  51. Shannon R S 1976 Sect. A: Cryst. Phys. Diffrac. Theoret. Gen. Crystallogr. 32 5

    Google Scholar 

  52. Beck M, Ellner M and Mittemeijer E 2001 Acta Mater. 49 6

    Article  Google Scholar 

  53. Mo H L, Jiang D-M, Wang C-M, Zhang W-G and Jiang J-S 2013 J. Alloys Compd. 579 187

  54. Kuang D, Tang P, Ding X, Yang S and Zhang Y 2015 J. Mater. Sci.: Mater. Electron. 26 5

    Google Scholar 

  55. Sati P C, Kumar M and Chhoker S 2015 Ceram. Int. 41 2

    Article  CAS  Google Scholar 

  56. Brinkman K, Iijima T, Nishida K, Katoda T and Funakubo H 2007 Ferroelectrics 357 1

    Article  CAS  Google Scholar 

  57. Kerr J and Lide D 2000 CRC Handbook of Chemistry and Physics 85 CRC Press

  58. Dey R and Bajpai P 2018 Radiat. Eff. Defects Solids 173 3

    Google Scholar 

  59. Guo Y, Xiao P, Wen R, Wan Y, Zheng Q, Shi D et al 2015 J. Mater. Chem. C 3 22

    CAS  Google Scholar 

  60. Chen Q, El Gabaly F, Aksoy Akgul F, Liu Z, Mun B S, Yamaguchi S et al 2013 Chem. Mater. 25 23

    Google Scholar 

  61. Barreca D, Gasparotto A, Milanov A, Tondello E, Devi A and Fischer R A 2007 Surf. Sci. Spectra 14 1

    Article  CAS  Google Scholar 

  62. Fang L, Liu J, Ju S, Zheng F, Dong W and Shen M 2010 Appl. Phys. Lett. 97 24

    Google Scholar 

  63. Wang J, Scholl A, Zheng H, Ogale S, Viehland D, Schlom D et al 2005 Science 307 5713

    CAS  Google Scholar 

  64. Lazenka V, Lorenz M, Modarresi H, Brachwitz K, Schwinkendorf P, Böntgen T et al 2013 J. Phys. D: Appl. Phys. 46 17

    Article  CAS  Google Scholar 

  65. Yan F, Lai M and Lu L 2012 J. Phys. D: Appl. Phys. 45 32

    Google Scholar 

  66. Hu G, Fan S, Yang C and Wu W 2008 Appl. Phys. Lett. 92 19

    Google Scholar 

  67. Ravalia A, Vagadia M, Solanki P, Gautam S, Chae K, Asokan K et al 2014 J. Appl. Phys. 116 15

    Article  CAS  Google Scholar 

  68. Dong G, Tan G, Luo Y, Liu W, Ren H and Xia A 2014 Ceram. Int. 40 5

    Google Scholar 

  69. Li Y, Yu J, Li J, Zheng C, Wu Y, Zhao Y et al 2011 J. Mater. Sci.: Mater. Electron. 22 4

    CAS  Google Scholar 

  70. Uniyal P and Yadav K 2008 J. Phys.: Condens. Matter 21 1

    Google Scholar 

  71. Wang K, Liu J-M and Ren Z 2009 Adv. Phys. 58 4

    Article  CAS  Google Scholar 

  72. Reetu A and Sanghi S 2011 J. Appl. Phys. 110 7

    Article  CAS  Google Scholar 

  73. Banerjee R, Jayakrishnan R and Ayyub P 2000 J. Phys. Condens. Matter 12 50

    Article  Google Scholar 

  74. Nalwa K S and Garg A 2008 J. Appl. Phys. 103 4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Murtaza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, S., Murtaza, G., Shaheen, F. et al. Effect of Y ions incorporation on structural, morphological and magnetic properties of Bi 1x Dy x FeO 3 for ferromagnetic applications . Bull Mater Sci 44, 216 (2021). https://doi.org/10.1007/s12034-021-02493-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02493-4

Keywords

Navigation