Skip to main content
Log in

A continuum damage-based computational methodology for crack growth simulation of metal films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

To simulate the crack growth and study the catastrophic fracture mechanisms of metal films, a computational methodology is developed to simulate the failure process from damage initiation to crack growth and eventually to rupture. In the computational methodology, a procedure is developed based on beam lattice model for considering the coupling interactions among damage and crack evolution. To verify the effectiveness of the developed computational methodology, fracture process of two copper film specimens were simulated and compared with the corresponding experimental results. The results show that the developed methodology is effective, and can be used to simulate the catastrophic fracture process of metal films. From the simulation results, we can find out that the fracture of metal films with initial flaws belongs to brittle fracture, and the regular lattice model can affect the crack path prediction, and random and irregular lattice model is more suitable to simulate crack growth in the developed computational methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. LaVan D A, Boyce B L and Buchheit T E 2003 Int. J. Damage Mech. 12 357

    Article  CAS  Google Scholar 

  2. Kivi A R, Azizi S and Khalkhali A 2016 Int. J. Mech. Mater. Des. 12 337

    Article  Google Scholar 

  3. Li Y, Li J and Xu L 2018 Microelectron. Reliab. 85 38

    Article  Google Scholar 

  4. Gao J, Chow P K, Thomas A V, Lu T M, Borca-Tasciuc T and Koratkar N 2014 Appl. Phys. Lett. 105 722

    Google Scholar 

  5. Sun B and Li Z 2019 Acta Mech. 230 2979

    Article  Google Scholar 

  6. Sun B and Li Z 2019 Eur. J. Mech. A: Solid 75 82

    Article  Google Scholar 

  7. Rogers J A 2010 Nature 468 177

    Article  CAS  Google Scholar 

  8. Heremans P, Tripathi A K, De Meux A D J, Smits E C P, Hou B, Pourtois G et al 2016 Adv. Mater. 28 4266

    Article  CAS  Google Scholar 

  9. Sun B, Huang X and Li Z 2019 Met. Mater. Int. 26 501

  10. Sun Y, Zhai Z, Tian S and Chen X 2019 Appl. Surf. Sci. 480 1100

    Article  CAS  Google Scholar 

  11. He X, Chen F and Yin H 2016 Int. J. Damage Mech. 71 423358

  12. Li X, Wei Y, Lu L, Lu K and Gao H 2010 Nature 464 877

    Article  CAS  Google Scholar 

  13. You Z S, Li X, Gui L, Lu Q, Zhu T, Gao H et al 2013 Acta Mater. 61 217

    Article  CAS  Google Scholar 

  14. Su Y, Wang S, Huang Y A, Luan H, Dong W, Fan J A et al 2015 Small 11 367

    Article  CAS  Google Scholar 

  15. Bastawros A F and Kim K S 2001 Int. J. Damage Mech. 10 195

    Article  Google Scholar 

  16. An B and Xu M 2019 Mech. Mater. 136 103084

    Article  Google Scholar 

  17. Zeng Z, Li X, Lu L and Zhu T 2015 Acta Mater. 98 313

    Article  CAS  Google Scholar 

  18. Shan Z, Lu L, Minor A M, Stach E A and Mao S X 2008 JOM-US 60 71

    Article  CAS  Google Scholar 

  19. Kim S, Li X, Gao H and Kumar S 2012 Acta Mater. 60 2959

    Article  CAS  Google Scholar 

  20. Hintsala E, Kiener D, Jackson J and Gerberich W W 2015 Exp. Mech. 55 1681

    Article  Google Scholar 

  21. Singh A, Tang L, Dao M, Lu L and Suresh S 2011 Acta Mater. 59 2437

    Article  CAS  Google Scholar 

  22. You Z S, Qu S, Luo S and Lu L 2019 Materialia 7 100430

    Article  Google Scholar 

  23. Yu S, Zhang X, Xiao X, Zhou H and Chen M 2015 Soft Matter 11 2203

    Article  CAS  Google Scholar 

  24. An B 2019 Eur. J. Mech. A: Solid 75 1

    Article  Google Scholar 

  25. Sadhukhan S, Kumar A, Kulkarni G U, Tarafdar S and Dutta T 2019 Bull. Mater. Sci. 42 197

    Article  Google Scholar 

  26. Yun K, Wang Z, Chang M, Liu J, Kim T, Son N et al 2019 Comput. Struct. 215 65

    Article  Google Scholar 

  27. Sun B, Wang X and Li Z 2015 Comput. Mater. Sci. 110 39

    Article  Google Scholar 

  28. Amor H, Marigo J and Maurini C 2009 J. Mech. Phys. Solids 57 1209

    Article  Google Scholar 

  29. Sun B and Li Z 2016 Int. J. Damage Mech. 25 750

    Article  CAS  Google Scholar 

  30. Miehe C, Hofacker M and Welschinger F 2010 Comput. Methods Appl. Mech. Eng. 199 2765

    Article  Google Scholar 

  31. Borden M J, Verhoosel C V, Scott M A, Hughes T J R and Landis C M 2012 Comput. Methods Appl. Mech. Eng. 217 77

    Article  Google Scholar 

  32. Nguyen T T, Yvonnet J, Zhu Q, Bornert M and Chateau C 2015 Eng. Fract. Mech. 139 18

    Article  Google Scholar 

  33. Erdogan F and Sih G C 1963 J. Basic Eng. 85 519

    Article  Google Scholar 

  34. Sih G C 1974 Int. J. Fract. 10 305

    Article  Google Scholar 

  35. Nuismer R J 1975 Int. J. Fract. 11 245

    Article  Google Scholar 

  36. Azadi H and Khoei A R 2011 Int. J. Numer. Methods Eng. 85 1017

    Article  Google Scholar 

  37. Belytschko T, Chen H, Xu J and Zi G 2003 Int. J. Numer. Methods Eng. 58 1873

    Article  Google Scholar 

  38. Alfaiate J, Wells G N and Sluys L J 2002 Eng. Fract. Mech. 69 661

    Article  Google Scholar 

  39. Bai Y L, Wang H, Xia M and Ke F 2005 Appl. Mech. Rev. 58 372

    Article  Google Scholar 

  40. Sun B and Li Z 2015 Comput. Struct. 152 66

    Article  Google Scholar 

  41. Sun B, Zheng Y and Li Z 2020 Constr. Build. Mater. 244 118396

    Article  Google Scholar 

  42. Sun B 2020 Arab. J. Geosci. 13 1031

    Article  Google Scholar 

Download references

Acknowledgements

The works described in this paper are financially supported by National Natural Science Foundation of China (Grant No. 52008104) and National Program on Key R&D Project of China (2020YFB2103500-2), to which we are most grateful. We are very grateful to the reviewers and the editor for their constructive comments and suggestions, which helped us to improve our paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Sun.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 57342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Xu, Zd. A continuum damage-based computational methodology for crack growth simulation of metal films. Bull Mater Sci 44, 200 (2021). https://doi.org/10.1007/s12034-021-02430-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02430-5

Keywords

Navigation