Skip to main content
Log in

Characterization and optimization of influence of MoS2 hybridization on tribological behaviours of Mg–B4C composites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Aerospace and automobile industries are facing challenges in developing lightweight materials with high corrosion and wear resistance. The magnesium (Mg) alloys are superior to their monolithics, as they have maximum strength-to-weight ratio. These challenges can be solved with application of Mg-based hybrid composites. Therefore, this study investigated the hybridizing effect of molybdenum disulphide (MoS2) reinforcement on tribological performance of magnesium–boron carbide (Mg–B4C) hybrid composites, fabricated by powder metallurgy technique. Wear tests under dry sliding condition were carried out on the prepared composite samples with different proportions/weight percentage (wt%), using a pin-on-disc apparatus. Mg, MoS2, B4C and their various composites were characterized, using X-ray diffraction, thermogravimetric analysis, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy analysis. The experiments were conducted using L27 orthogonal array with five factors at three levels that affected the tribological performance. The wear resistance of the hybrid Mg–B4C–MoS2 composites significantly increased when compared with Mg–B4C and Mg–MoS2 composites, due to the refined effect of both reinforcements. Analysis of variance and grey-relational analysis result showed that increase in MoS2, sliding distance (DSl) and load (LSl) significantly influenced the tribological performance of the hybrid composites. Mg–10wt%B4C–5wt%MoS2 exhibited significant best improvement on the multi-response tribological performance. The optimum quantity of MoS2 reinforcement was around 7 wt%. Beyond this threshold proportion, wear was significantly increased, due to the agglomeration of MoS2 particles. Hardness of the composites increased with hybridized reinforcements. SEM micrographs depicted the homogeneous dispersion of reinforcements in the Mg matrix. Also, SEM micrographs of the worn surfaces confirmed that delamination wear mechanism was dominant on the Mg hybrid composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Mordike B L and Ebert T 2001 Mater. Sci. Eng. 302 37

    Article  Google Scholar 

  2. An J, Li R G, Lu Y, Chen C M, Xu Y C, Chen X et al 2008 Wear 265 97

    Article  CAS  Google Scholar 

  3. Chelliah N M, Pambannan P and Surappa M K 2019 J. Compos. Mater. 53 3741

    Article  CAS  Google Scholar 

  4. Ye H Z and Liu X Y 2004 J. Mater. Sci. 39 6153

    Article  CAS  Google Scholar 

  5. Cao G, Choi H, Konishi H, Kou S, Lakes R and Li X 2008 J. Mater. Sci. 43 5521

    Article  CAS  Google Scholar 

  6. Aydin F, Sun Y and Turan M E 2020 J. Compos. Mater. 54 141

    Article  CAS  Google Scholar 

  7. Selvam B, Marimuthu P, Narayanasamy R, Anandakrishnan V, Tun K S, Gupta M et al 2014 Mater. Des. 58 475

    Article  CAS  Google Scholar 

  8. Cai Y, Tan M J, Shen G J and Su H Q 2000 Mater. Sci. Eng. 282 232

    Article  Google Scholar 

  9. Wang X J, Wu K, Huang W X, Zhang H F, Zheng M Y and Peng D L 2007 Compos. Sci. Technol. 67 2253

    Article  CAS  Google Scholar 

  10. Ramachandra M and Radhakrishna K 2005 J. Mater. Sci. 40 5989

    Article  CAS  Google Scholar 

  11. Ramachandra M and Radhakrishna K 2007 Wear 262 1450

    Article  CAS  Google Scholar 

  12. Jiang Q C, Wang H Y, Ma B X, Wang Y and Zhao F 2005 J. Alloys Compd. 386 177

    Article  CAS  Google Scholar 

  13. Poddar P, Srivastava V C, De P K and Sahoo K L 2007 Mater. Sci. Eng. 460 357

    Article  CAS  Google Scholar 

  14. Jalilvand M M and Mazaheri Y 2020 Ceram. Int. 46 20345

    Article  CAS  Google Scholar 

  15. Turan M E, Zengin H, Cevik E, Sun Y, Turen Y and Ahlatci H 2016 Inter. J. Mater. Metallurg. Eng. 10 1224

    Google Scholar 

  16. Rao R N, Das S, Mondal D P and Dixit G 2009 Wear 267 1688

    Article  CAS  Google Scholar 

  17. Paydar S, Jafari A, Bahrololoom M E and Mozafari V 2015 Tribol. Mater. Surf. Interf. 9 105

    Article  CAS  Google Scholar 

  18. Thuault A, Marinel S, Savary E, Heuguet R, Saunier S, Goeuriot D et al 2013 Ceram. Int. 39 1215

    Article  CAS  Google Scholar 

  19. Rajkumar P R, Kailasanathan C, Senthilkumar A, Selvakumar N and John Rajan A 2020 Mater. Res. Exp. 7 1

    Google Scholar 

  20. Rahmani K and Majzoobi G H 2020 J. Compos. Mater. 54 2297

    Article  CAS  Google Scholar 

  21. Sharma S C, Anand B and Krishna M 2000 Wear 241 33

    Article  CAS  Google Scholar 

  22. Turan M E, Sun Y, Aydin F and Akgul Y 2018 J. Compos. Mater. 52 3127

    Article  CAS  Google Scholar 

  23. Ravindran P, Manisekar K, Rathika P and Narayanasamy P 2013 Mater. Des. 45 561

    Article  CAS  Google Scholar 

  24. Narayanasamy P, Selvakumar N and Balasundar P 2015 Trans. Indian. Inst. Met. 68 911

    Article  CAS  Google Scholar 

  25. Beall C J 1999 Met. Finish. 100 513

    Article  Google Scholar 

  26. Zhao B, Ding W, Kuang W and Fu Y 2019 Ind. Lub. Tribol. 71 712

    Article  Google Scholar 

  27. Donnet C, Martin J M, Le Mogne T and Belin M 1996 Tribol. Int. 29 123

    Article  CAS  Google Scholar 

  28. Vazirisereshk M R, Martini A, Strubbe D A and Baykara M Z 2019 Lubricants 7 57

    Article  Google Scholar 

  29. Zeng C, Pu J, Wang H, Zheng S and Chen R 2020 Ceram. Int. 46 13774

    Article  CAS  Google Scholar 

  30. Narayanasamy P and Selvakumar N 2017 Trans. Nonf. Met. Soc. China 27 312

    Article  CAS  Google Scholar 

  31. Ravindran P, Manisekar K, Narayanasamy P, Selvakumar N and Narayanasamy R 2012 Mater. Des. 39 42

    Article  CAS  Google Scholar 

  32. Baradeswaran A and Perumal A E 2014 Compos Part B 56 464

    Article  CAS  Google Scholar 

  33. Bayhan M and Önel K 2010 Mater. Des. 31 3015

    Article  CAS  Google Scholar 

  34. Kumar K A, Pillai U T, Pai B C and Chakraborty M 2013 Wear 303 56

    Article  CAS  Google Scholar 

  35. Chiranth B P, Siddaraju C, Mishra R K, Sasikumar R, Sathiskumar R and Ram Prabhu T 2019 Mater. Sci. Forum. 969 86

    Article  Google Scholar 

  36. Hiratsuka K, Enomoto A and Sasada T 1992 Wear 153 361

    Article  CAS  Google Scholar 

  37. Baradeswaran A E and Perumal A E 2013 Compos. Part B 54 146

    Article  CAS  Google Scholar 

  38. Aatthisugan I, Rose A R and Jebadurai D S 2017 J. Mag. Alloys 5 20

    Article  CAS  Google Scholar 

  39. Joseph J D, Kumaragurubaran B and Sathish S 2019 Silicon 12 1

    Google Scholar 

  40. Chen L, Yao Y 2014 Acta Metallurg. Sinica. 27 762

    CAS  Google Scholar 

  41. Vani V V and Chak S K 2018 Manuf. Rev. 5 1

    Google Scholar 

  42. Mohan Raj A P, Selvakumar N, Narayanasamy R and Kailasanathan C 2013 Mater. Des. 49 791

    Article  CAS  Google Scholar 

  43. Mohan Raj A P, Kailasanathan C and Seenikannan P 2014 Int. J. Chemtech. Res. 6 4777

    Google Scholar 

  44. Ravindran P, Manisekar K, Narayanasamy R and Narayanasamy P 2013 Ceram. Int. 39 1169

    Article  CAS  Google Scholar 

  45. Ghosh S, Sahoo P and Sutradhar G 2013 J. Compos. 2013 1

    Article  Google Scholar 

  46. Senthilkumar M, Saravanan S D and Shankar S 2015 J. Compos. Mater. 49 2241

    Article  Google Scholar 

  47. Basavarajappa S, Chandramohan G and Davim J P 2007 Mater. Des. 28 1393

    Article  CAS  Google Scholar 

  48. Basavarajappa S, Chandramohan G, Mahadevan A, Thangavelu M, Subramanian R and Gopalakrishnan P 2007 Wear 262 1007

    Article  CAS  Google Scholar 

  49. Tsao C C 2009 Int. J. Adv. Manuf. Technol. 40 41

    Article  Google Scholar 

  50. Chandrasekar G, Kailasanathan C and Verma D K 2017 Trans. Indian. Inst. Met. 70 671

    Article  CAS  Google Scholar 

  51. Khatkar S K, Verma R, Kharb S S, Thakur A and Sharma R 2021 Silicon 13 1461

    Google Scholar 

  52. Kumar P N, Rajadurai A and Muthuramalingam T 2018 Silicon 10 1723

    Article  CAS  Google Scholar 

  53. Shamekh M, Pugh M and Medraj M 2012 Mater. Chem. Phys. 135 193

    Article  CAS  Google Scholar 

  54. Nandagopal K and Kailasanathan C 2016 J. Alloys Compd. 682 503

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We hereby acknowledge and sincerely appreciate unalloyed supports from the managements of the following institutions: Sethu Institute of Technology, Pulloor, Kariapatti, Virudhunagar District, Tamilnadu, India, as well as the Kalasalingam Academy of Research and Education, Virdhunagar, Tamilnadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Kailasanathan.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1693 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kailasanathan, C., Rajkumar, P.R., Rajini, N. et al. Characterization and optimization of influence of MoS2 hybridization on tribological behaviours of Mg–B4C composites. Bull Mater Sci 44, 192 (2021). https://doi.org/10.1007/s12034-021-02423-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02423-4

Keywords

Navigation