Skip to main content
Log in

Thin film chemiresistive gas sensor on single-walled carbon nanotubes-functionalized with polyethylenimine (PEI) for \({\hbox {NO}}_{2}\) gas sensing

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Chemical detection of toxic gases, such as greenhouse gases is still very important as a research topic. To design gas sensor detectors based on single-walled carbon nanotubes (SWCNTs) with high sensitivity and selectivity for the toxic environment is a continuous process. The aim is to detect \({\hbox {NO}}_{2}\) gas with better sensitivity. In the present work, the thin-film sensor is fabricated on \({\hbox {SiO}}_{2}\) substrate and it is functionalized with polyethylenimine (PEI). It has been established that PEI functionalized SWCNTs (F-SWCNTs) show high sensitivity towards strong electron-withdrawing particles. It was found that at room temperature, SWCNTs-PEI functionalized gas sensor exhibited a higher sensitivity of 37.00% as compared with bare SWCNTs gas sensor. The gas sensor has shown the repeatable response for the entire concentration range studied. The sensing properties and the PEI functionalization duration effects on the behaviour of SWCNTs-based gas sensors were demonstrated.

Graphic abstract

Figure (A) Micrograph of the PEI-functionalized SWCNT sensor, Figure (B) Change in the behaviour of the SWCNT sensor with the increment in functionalization duration, Figure (C) Repeatability of the SWCNT sensor, Figure (D) Response of the SWCNT sensor in the presence of various concentrationS of \({\hbox {NO}}_{2}\) gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. WHO 2016 WHO releases country estimates on air pollution exposure and health impact, WHO, Online. Available: http://www.who.int/mediacentre/news/releases/2016/air-pollution-estimates/en/#

  2. Pan X, Zhao X, Bermak A and Fan Z 2016 IEEE Electr. Dev. Lett. 37 92

    CAS  Google Scholar 

  3. Cullinan P, Muñoz X, Suojalehto H, Agius R, Jindal S, Sigsgaard T et al 2017 Lancet Resp. Med. 5 445

    Google Scholar 

  4. Liddle L, Monaghan C, Burleigh M C, McIlvenna L C, Muggeridge D J and Easton C 2018 Nitric Oxide Biol. Chem. 72 59

    CAS  Google Scholar 

  5. Antisari M V, Marazzi R and Krsmanovic R 2003 Carbon NY 41 2393

    Google Scholar 

  6. Teymourzadeh M and Kangarlou H 2012 World Appl. Sci. J. 18 879

    CAS  Google Scholar 

  7. Lee A P and Reedy B J 1999 Sensors Actuators B Chem. 60 35

    CAS  Google Scholar 

  8. Martinelli E, Polese D, Catini A, Amico A D and Di Natale C 2012 Sensors Actuators B Chem. 161 534

    CAS  Google Scholar 

  9. Wei B Y, Hsu M C, Su P G, Lin H M, Wu R J and Lai H J 2004 Sensors Actuators B Chem. 101 81

    CAS  Google Scholar 

  10. Van Hieu N, Thuy L T B and Chien N D 2008 Sensors Actuators B Chem. 129 888

    Google Scholar 

  11. Ghoorchian A and Alizadeh N 2018 Sensors Actuators B Chem. 255 826

    CAS  Google Scholar 

  12. Sayago I, Fernández M J, Fontecha J L, Horrillo M C, Vera C, Obieta I et al 2012 Sensors Actuators B Chem. 175 67

    CAS  Google Scholar 

  13. Iijima S 1991 Nature 354 56

    CAS  Google Scholar 

  14. Abdulla S, Mathew T L and Pullithadathil B 2015 Sensors Actuators B Chem. 221 1523

    CAS  Google Scholar 

  15. Chen L, Chen Z, Huang Z, Huang Z, Wang Y, Li H et al 2015 J. Phys. Chem. C 119 28757

    CAS  Google Scholar 

  16. Shen J, Zhu Y, Yang X and Li C 2012 Chem. Commun. 48 3686

    CAS  Google Scholar 

  17. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba D N et al 2011 Nat. Nanotechnol. 6 296

    CAS  Google Scholar 

  18. Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H et al 2011 Nat. Nanotechnol. 6 788

    CAS  Google Scholar 

  19. Rafiee M, Rafiee J, Wang Z, Song H, Yu Z and Koratkar N 2009 ACS Nano 3 3884

    CAS  Google Scholar 

  20. Balint R, Cassidy N J and Cartmell S H 2014 Acta Biomater. 10 2341

    CAS  Google Scholar 

  21. Inoue S and Matsumura Y 2009 Chem. Phys. Lett. 469 125

    CAS  Google Scholar 

  22. Lupi C, Felli F, Brotzu A, Caponera M A and Paolozzi A 2008 IEEE Sensors J. 8 1299

    Google Scholar 

  23. Körösi L, Mogyorósi K, Kun R, Németh J and Dékány I 2004 Prog. Colloid Polym. Sci. 125 27

    Google Scholar 

  24. Mishra P, Harsh H and Islam S S 2013 Int. Nano Lett. 3 46

    Google Scholar 

  25. Battie Y, Ducloux O, Thobois P, Dorval N, Lauret J S and Loiseau A 2011 Carbon 49 3544

    CAS  Google Scholar 

  26. Hussain S, Jha P, Chouksey A, Raman R, Islam S S, Islam T et al 2011 J. Mod. Phys. 2 538

    CAS  Google Scholar 

  27. Jorio A, Saito R and Hafner J H 2001 Phys. Rev. Lett. 86 6

    Google Scholar 

  28. Kong J and Dai H 2001 J. Phys. Chem. B 105 2890

    CAS  Google Scholar 

  29. Shim M, Javey A, Kam N W S and Dai H 2001 J. Am. Chem. Soc. 123 11512

    CAS  Google Scholar 

  30. Connell M J O, Boul P, Ericson L M, Hu C, Wang Y, Haroz E et al 2001 Chem. Phys. Lett.342 265

    Google Scholar 

  31. Karthigeyan A, Minami N and Iakoubovskii K 2008 Jpn. J. Appl. Phys. 47 7440

    CAS  Google Scholar 

  32. Jeon J Y, Kang B C, Byun Y T and Ha T J 2019 Nanoscale 11 1587

    CAS  Google Scholar 

  33. Fukumaru T, Fujigaya T and Nakashima N 2015 Sci. Rep. 5 1

    Google Scholar 

  34. Geier M L, McMorrow J J, Xu W, Zhu J, Kim C H, Marks T J et al 2015 Nat. Nanotechnol. 10 944

    CAS  Google Scholar 

  35. Takenobu T, Takano T, Shiraishi M, Murakami Y, Ata M, Kataura H et al 2003 Nat. Mater. 2 683

    CAS  Google Scholar 

  36. Kumar D, Kumar I, Chaturvedi P, Chouksey A, Tandon R P and Chaudhury P K 2016 Mater. Chem. Phys. 177 276

    CAS  Google Scholar 

  37. Evans G P, Buckley D J, Skipper N T and Parkin I P 2014 RSC Adv. 4 51395

    CAS  Google Scholar 

  38. Terrones M and Terrones H 1996 Fullerene Sci. Technol. 4 517

    CAS  Google Scholar 

  39. Crespi V H, Cohen M L and Rubio A 1997 Phys. Rev. Lett. 79 2093

    CAS  Google Scholar 

  40. Chen X, Shen Y, Zhang W, Zhang J, Wei D, Lu R et al 2018 Appl. Surf. Sci. 435 1096

    CAS  Google Scholar 

  41. Betty C A, Sehra K, Barick K C and Choudhury S 2018 Anal. Chim. Acta 1039 82

    CAS  Google Scholar 

  42. Yong Zhou Y G, Cheng Z and Xiaogang L 2018 Appl. Phys. Lett. 113 082103

    Google Scholar 

  43. Shao S, Che L, Chen Y, Lai M, Huang S and Koehn R 2019 J. Alloys Compd. 774 1

    CAS  Google Scholar 

  44. Zhao S, Wang G, Liao J, Lv S, Zhu Z and Li Z 2018 Appl. Surf. Sci. 456 808

    CAS  Google Scholar 

  45. Zhao S, Li Z, Wang G, Liao J, Lv S and Zhu Z 2018 RSC Adv. 8 11070

    CAS  Google Scholar 

  46. Naje A N and Mahmood W K 2018 IOP Conf. Ser. Mater. Sci. Eng. 454 1

    Google Scholar 

Download references

Acknowledgements

The investigation was supported by the Ministry of Science and Higher Education of Russian Federation (project 0777-2017-0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Pavelyev, V., Mishra, P. et al. Thin film chemiresistive gas sensor on single-walled carbon nanotubes-functionalized with polyethylenimine (PEI) for \({\hbox {NO}}_{2}\) gas sensing. Bull Mater Sci 43, 61 (2020). https://doi.org/10.1007/s12034-020-2043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2043-6

Keywords

Navigation