Skip to main content
Log in

Effect of alkali metal (Na, K) ion ratio on structural, optical and photoluminescence properties of K0.5Na0.5NbO3 ceramics prepared by sol–gel technique

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The method of preparation and its processing parameters have a strong effect on the structure and non-linear properties of the materials. A sol–gel technique is highly favoured owing to its lower production temperature, nanoparticle size, inter-diffusion of cations and cost-effectiveness. Sodium potassium niobate (KNN) is the most capable environmentally friendly material, which has been studied for the last decades as a promising candidate among all lead-free perovskites materials. In this article, we have prepared KNN ceramics by using the wet chemical sol–gel route. To control the volatility of (Na, K) ions at higher production temperature, we have added 10–20% (Na, K) alkali metal in the precursor solution. The phase investigation and crystalline character of the ceramics have been analysed by X-ray diffractometer. Raman spectroscopy analysis disclosed that pure KNN ceramic has a better crystalline and perovskite structure. FTIR analysis is done to analyse the presence of the functional group in the wavenumber range of 4000–500 cm−1. The surface microstructure analysis and morphology of the KNN ceramics have been studied by using field emission scanning electron microscopy techniques. Further, the optical and photoluminescence behaviour has been studied at room temperature to know its practical applications in various electro-optic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Haertling G H 1999 J. Am. Ceram. Soc. 82 797

    Article  CAS  Google Scholar 

  2. Baxter F R, Bowen C R, Tnrner I G and Dent A C E 2010 Ann. Biomed. Eng. 38 2079

    Article  CAS  Google Scholar 

  3. Gupta V, Sharma M and Thakur N 2010 J. Int. Mater. Sys. Struct. 21 1227

    Article  Google Scholar 

  4. Jiagang W, Dingquan X and Jianguo Z 2015 Chem. Rev. 115 2559

    Article  Google Scholar 

  5. Bowen C R, Kim H A, Weaver P M and Dunn S 2014 Energy Environ. Sci. 7 25

    Article  CAS  Google Scholar 

  6. Kumar S, Shandilya M, Thakur S, Thakur N and Kaur G A 2019 J. Sol-Gel Sci. Technol. 92 215

    Article  CAS  Google Scholar 

  7. Panda P K 2009 J. Mater. Sci. 44 5049

    Article  CAS  Google Scholar 

  8. Panda P K and Sahoo B 2015 Ferroelectrics 474 128

    Article  CAS  Google Scholar 

  9. Yi L, Moon K and Wong C P 2005 Science 308 1419

    Article  Google Scholar 

  10. Chen K, Zhou J, Zhang F, Zhang X, Li C and An L 2015 J. Am. Ceram. Soc. 98 1698

    Article  CAS  Google Scholar 

  11. Safari A and Hejazi M 2012 in Lead-free piezoelectrics S Priya and S Nahm (eds) (New York, NY: Springer)

    Google Scholar 

  12. Kumar S and Thakur N 2019 J. Electron. Mater. 48 6203

    Article  CAS  Google Scholar 

  13. Kumar S and Thakur N 2019 Bull. Mater. Sci. 42 135

    Article  Google Scholar 

  14. Dolhen M, Mahajan A, Pinho R, Costa M E, Trolliard G and Vilarinho P M 2015 RSC Adv. 5 4698

    Article  CAS  Google Scholar 

  15. Adachi S 1999 Optical properties of crystalline and amorphous semiconductors: materials and fundamental principles (Springer Science + Business Media, LLC)

    Book  Google Scholar 

  16. Mandal S K, Rakshit T, Ray S K, Mishra S K, Krishna P S R and Chandra A 2013 J. Phys.: Condens. Matter 25 055303

    CAS  Google Scholar 

  17. Wang Z, Gu H, Hu Y, Yang K, Hu M, Zhoua D et al 2010 CrystEngComm 12 3157

    Article  CAS  Google Scholar 

  18. Aydın C, Al-Hartomy O A, Al-Ghamdi A A, Al-Hazmi F, Yahia I S, El-Tantawy F et al 2012 J. Electroceram. 29 155

    Article  Google Scholar 

  19. Choudhury B, Borah B and Choudhury A 2012 Photochem. Photobiol. 88 257

    Article  CAS  Google Scholar 

  20. Park W D 2012 Trans. Electr. Electron. Mater. 13 196

    Article  Google Scholar 

  21. Singh J, Verma V, Kumar R and Kumar R 2019 Results Phys. 13 102106

    Article  Google Scholar 

  22. Elkorashy A M 1990 Phys. Status Solidi B 159 903

    Article  CAS  Google Scholar 

  23. Moss T S, Burrell G J and Ellis E 2013 Semiconductor opto-electronics (London: Butterworth & Co. Ltd.)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SHAMMI KUMAR.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information (DOCX 283 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KUMAR, S., THAKUR, N. Effect of alkali metal (Na, K) ion ratio on structural, optical and photoluminescence properties of K0.5Na0.5NbO3 ceramics prepared by sol–gel technique. Bull Mater Sci 44, 51 (2021). https://doi.org/10.1007/s12034-020-02341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02341-x

Keywords

Navigation