Skip to main content
Log in

Van der Waals interactions and oscillatory behaviour of carbon onions interacting with a fully constrained graphene sheet

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study focuses on the van der Waals (vdW) interactions and oscillatory behaviour of nested spherical fullerenes (carbon onions) in the vicinity of a single-layer graphene (SLG) sheet. The carbon onions are of Ih symmetries and the graphene sheet is modelled as a fully constrained flat surface. Employing the continuum approximation along with the 6–12 Lennard-Jones (LJ) potential function, explicit analytical expressions are determined to calculate the vdW potential energy and interaction force. The equation of motion is solved numerically based on the actual force distribution to attain the displacement and velocity of the carbon onion. Using the conservation of mechanical energy principle, a semi-analytical expression is also derived to accurately evaluate the oscillation frequency. Numerical results are presented to examine the influences of size of carbon onion and initial conditions (initial separation distance and initial velocity) on the operating frequency of carbon onion–SLG sheet oscillators. It is shown that carbon onion executes oscillatory motion above the graphene sheet with frequencies in the gigahertz (GHz) range. It is further observed that smaller structures of carbon onions produce greater frequencies. We comment that the presented results in this study would contribute to the development of new generation of nano-oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Subramanian A, Dong L X, Nelson B J and Ferreira A 2010 Appl. Phys. Lett. 96 073116

    Article  Google Scholar 

  2. Kang J W, Kim K S, Kwon O K and Lee G Y 2017 J. Nanosci. Nanotechnol. 17 8332

    Article  Google Scholar 

  3. Lin Y W, Jiang W G, Qin Q H and Liao S M 2020 Physica E 118 113943

    Article  CAS  Google Scholar 

  4. Chen T, Dumas R K, Eklund A, Muduli P K, Houshang A, Awad A A et al 2016 Proc. IEEE 104 1919

    Article  Google Scholar 

  5. Neubrech F, Pucci A, Cornelius T W, Karim S, García-Etxarri A and Aizpurua J 2008 Phys. Rev. Lett. 101 157403

    Article  Google Scholar 

  6. Shan X, Fang Y, Wang S, Guan Y, Chen H Y and Tao N 2014 Nano Lett. 14 4151

    Article  CAS  Google Scholar 

  7. Deshpande V V, Chiu H Y, Postma H W C, Mikó C, Forró L and Bockrath M 2006 Nano Lett. 6 1092

    Article  CAS  Google Scholar 

  8. Cumings J and Zettl A 2000 Science 289 602

    Article  CAS  Google Scholar 

  9. Zheng Q, Liu J Z and Jiang Q 2002 Phys. Rev. B 65 245409

    Article  Google Scholar 

  10. Ma C C, Zhao Y, Yam C Y, Chen G and Jiang Q 2005 Nanotechnology 16 1253

    Article  CAS  Google Scholar 

  11. Wong L H, Zhao Y, Chen G and Chwang A T 2006 Appl. Phys. Lett. 88 183107

    Article  Google Scholar 

  12. Legoas S B, Coluci V R, Braga S F, Coura P Z, Dantas S O and Galvão D S 2003 Phys. Rev. Lett. 90 055504

    Article  CAS  Google Scholar 

  13. Rivera J L, McCabe C and Cummings P T 2003 Nano Lett. 3 1001

    Article  CAS  Google Scholar 

  14. Legoas S B, Coluci V R, Braga S F, Coura P Z, Dantas S O and Galvão D S 2004 Nanotechnology 15 S184

    Article  CAS  Google Scholar 

  15. Hu W, Song M, Yin T, Wei B and Deng Z 2018 Nonlinear Dyn. 91 767

    Article  Google Scholar 

  16. Guo W, Guo Y, Gao H, Zheng Q and Zhong W 2003 Phys. Rev. Lett. 91 125501

    Article  Google Scholar 

  17. Zhao Y, Ma C C, Chen G and Jiang Q 2003 Phys. Rev. Lett. 91 175504

    Article  Google Scholar 

  18. Liu P, Zhang Y W and Lu C 2005 J. Appl. Phys. 97 094313

    Article  Google Scholar 

  19. Baowan D and Hill J M 2008 J. Comput. Theor. Nanosci. 5 302

    Article  CAS  Google Scholar 

  20. Sadeghi F and Ansari R 2017 Eur. Phys. J. Plus 132 309

    Article  Google Scholar 

  21. Ansari R, Sadeghi F and Ajori S 2017 Eur. J. Mech. A Solids 62 67

    Article  Google Scholar 

  22. Ansari R and Sadeghi F 2012 J. Nanotechnol. Eng. Med. 3 011001

    Article  Google Scholar 

  23. Cox B J, Thamwattana N and Hill J M 2008 Proc. R Soc. A 464 691

    Article  Google Scholar 

  24. Kang J W and Lee K W 2014 J. Korean Phys. Soc. 65 185

    Article  CAS  Google Scholar 

  25. Zang X, Zhou Q, Chang J, Liu Y and Lin L 2015 Microelectron. Eng. 132 192

    Article  CAS  Google Scholar 

  26. Li D and Kaner R B 2008 Science 320 1170

    Article  CAS  Google Scholar 

  27. Heyrovska R 2008 arXiv preprint arXiv:0804.4086

  28. Booth T J, Blake P, Nair R R, Jiang D, Hill E W, Bangert U et al 2008 Nano Lett. 8 2442

    Article  CAS  Google Scholar 

  29. Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al 2008 Nano Lett. 8 902

    Article  CAS  Google Scholar 

  30. Cao M, Xiong D B, Yang L, Li S, Xie Y, Guo Q et al 2019 Adv. Funct. Mater. 29 1806792

    Article  Google Scholar 

  31. Rahman R, Foster J T and Haque A 2013 J. Phys. Chem. A 117 5344

    Article  CAS  Google Scholar 

  32. Tan Q, Kong X, Guan X, Wang C and Xu B 2020 CrystEngComm 22 320

    Article  CAS  Google Scholar 

  33. Liu C, Alwarappan S, Chen Z, Kong X and Li C Z 2010 Biosens. Bioelectron. 25 1829

    Article  CAS  Google Scholar 

  34. Xuan Y, Wu Y Q, Shen T, Qi M, Capano M A, Cooper J A et al 2008 Appl. Phys. Lett. 92 013101

    Article  Google Scholar 

  35. Qu L, Liu Y, Baek J B and Dai L 2010 ACS Nano 4 1321

    Article  CAS  Google Scholar 

  36. Justino C I L, Gomes A R, Freitas A C, Duarte A C and Rocha-Santos T A P 2017 Trends Anal. Chem. 91 53

    Article  CAS  Google Scholar 

  37. Tu Z, Wycisk V, Cheng C, Chen W, Adeli M and Haag R 2017 Nanoscale 9 18931

    Article  CAS  Google Scholar 

  38. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V et al 2004 Science 306 666

    Article  CAS  Google Scholar 

  39. Ding X, Chen X, Chen X, Zhao X and Li N 2018 Sens. Actuators B 266 534

    Article  CAS  Google Scholar 

  40. Yang Z, Tian J, Yin Z, Cui C, Qian W and Wei F 2019 Carbon 141 467

    Article  CAS  Google Scholar 

  41. Hu J, Liu Q, Shi Z, Zhang L and Huang H 2016 RSC Adv. 6 86386

    Article  CAS  Google Scholar 

  42. Ayazi H, Akhavan O, Raoufi M, Varshochian R, Motlagh N S H and Atyabi F 2020 Colloids Surf. B 186 110712

    Article  CAS  Google Scholar 

  43. Yu D, Park K, Durstock M and Dai L 2011 J. Phys. Chem. Lett. 2 1113

    Article  CAS  Google Scholar 

  44. Chakravarty C, Mandal B and Sarkar P 2018 J. Phys. Chem. C 122 15835

    Article  CAS  Google Scholar 

  45. Koh W, Lee J H, Lee S G, Choi J I and Jang S S 2015 RSC Adv. 5 32819

    Article  CAS  Google Scholar 

  46. Grimme S, Mück-Lichtenfeld C and Antony J 2007 J. Phys. Chem. C 111 11199

    Article  CAS  Google Scholar 

  47. Laref S, Asaduzzaman A M, Beck W, Deymier P A, Runge K, Adamowicz L et al 2013 Chem. Phys. Lett. 582 115

    Article  CAS  Google Scholar 

  48. Ma H, Babaei H and Tian Z 2019 Carbon 148 196

    Article  CAS  Google Scholar 

  49. Reveles J U, Karle N N, Baruah T and Zope R R 2016 J. Phys. Chem. C 120 26083

    Article  CAS  Google Scholar 

  50. Ansari R, Sadeghi F and Ajori S 2013 Mech. Res. Commun. 47 18

    Article  Google Scholar 

  51. Sadeghi F, Ansari R and Darvizeh M 2016 Z. Angew. Math. Phys. 67 80

    Article  Google Scholar 

  52. Ghavanloo E and Fazelzadeh S A 2017 Physica B 504 47

    Article  CAS  Google Scholar 

  53. Baowan D, Peuschel H, Kraegeloh A and Helms V 2013 J. Mol. Model. 19 2459

    Article  CAS  Google Scholar 

  54. Thamwattana N and Hill J M 2008 J. Nanopart. Res. 10 665

    Article  CAS  Google Scholar 

  55. Shen Y and Cooper G F 2010 Methods. Inf. Med. 49 44

    Article  CAS  Google Scholar 

  56. Lu J P and Yang W 1994 Phys. Rev. B 49 11421

    Article  CAS  Google Scholar 

  57. Dunlap B I and Zope R R 2006 Chem. Phys. Lett. 422 451

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Sadeghi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, F., Ansari, R. Van der Waals interactions and oscillatory behaviour of carbon onions interacting with a fully constrained graphene sheet. Bull Mater Sci 44, 44 (2021). https://doi.org/10.1007/s12034-020-02334-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02334-w

Keywords

Navigation