Skip to main content
Log in

Energy dissipation of damping cantilevered single-walled carbon nanotube oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The cantilevered carbon nanotube is a traditional model in the design of some precise nano-oscillators. The sensitivity that is denoted by the quality factor defined as the ratio of the energy stored to the energy dissipated by losses in the oscillator is an important index for the nano-oscillators. In this paper, the small mass impacting on the single-walled carbon nanotube is simplified as an impact load and the governing equation of the transverse oscillation for the nanotube is established firstly. Based on the structure-preserving idea, the generalized multi-symplectic formulations of the governing equation are constructed. The oscillation of the damping nanotube under the transverse impact load with different amplitudes is simulated after the small numerical dissipation and the good convergence of the scheme constructed is verified. From the numerical results, the effects of the induced tension and the energy dissipation are investigated. More importantly, the high precision and the feasibility of the numerical approach proposed in this paper for reproducing the energy dissipation in the carbon nanotube oscillator are illustrated, which gives a new way to investigate the properties of the carbon nanotube oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun, Y.P., Fu, K.F., Lin, Y., Huang, W.J.: Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res. 35(12), 1096–1104 (2002). https://doi.org/10.1021/ar010160v

    Article  Google Scholar 

  2. Dai, H.J.: Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35(12), 1035–1044 (2002). https://doi.org/10.1021/ar0101640

    Article  Google Scholar 

  3. Yu, M.F., Files, B.S., Arepalli, S., Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000). https://doi.org/10.1103/PhysRevLett.84.5552

    Article  Google Scholar 

  4. Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58(20), 14013–14019 (1998). https://doi.org/10.1103/PhysRevB.58.14013

    Article  Google Scholar 

  5. Lu, J.P.: Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79(7), 1297–1300 (1997). https://doi.org/10.1103/PhysRevLett.79.1297

    Article  Google Scholar 

  6. Ruoff, R.S., Lorents, D.C.: Mechanical and thermal-properties of carbon nanotubes. Carbon 33(7), 925–930 (1995). https://doi.org/10.1016/0008-6223(95)00021-5

    Article  Google Scholar 

  7. Baughman, R.H., Cui, C.X., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M.: Carbon nanotube actuators. Science 284(5418), 1340–1344 (1999). https://doi.org/10.1126/science.284.5418.1340

    Article  Google Scholar 

  8. Kong, J., Franklin, N.R., Zhou, C.W., Chapline, M.G., Peng, S., Cho, K.J., Dai, H.J.: Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000). https://doi.org/10.1126/science.287.5453.622

    Article  Google Scholar 

  9. Feng, E.H., Jones, R.E.: Carbon nanotube cantilevers for next-generation sensors. Phys. Rev. B 83(19) (2011). https://doi.org/10.1103/PhysRevB.83.195412

  10. Kaka, S., Pufall, M.R., Rippard, W.H., Silva, T.J., Russek, S.E., Katine, J.A.: Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437(7057), 389–392 (2005). https://doi.org/10.1038/nature04035

    Article  Google Scholar 

  11. Mohanty, P.: Nanotechnology: nano-oscillators get it together. Nature 437(7057), 325–326 (2005). https://doi.org/10.1038/437325a

    Article  Google Scholar 

  12. Wang, X., Dai, H.L.: Dynamic response of a single-wall carbon nanotube subjected to impact. Carbon 44(1), 167–170 (2006). https://doi.org/10.1016/j.carbon.2005.08.017

    Article  Google Scholar 

  13. Lucci, M., Toschi, F., Sessa, V., Orlanducci, S., Tamburri, E., Terranova, M.L.: Quartz crystal nano-balance for hydrogen sensing at room temperature using carbon nanotubes aggregates—art. no. 658917. In: Becker, T., Cane, C., Barker, N.S. (eds.) Smart Sensors, Actuators, and MEMS III, vol. 6589. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), pp. 58917–58917 (2007)

  14. Snow, E.S., Campbell, P.M., Novak, J.P.: Single-wall carbon nanotube atomic force microscope probes. Appl. Phys. Lett. 80(11), 2002–2004 (2002). https://doi.org/10.1063/1.1461073

    Article  Google Scholar 

  15. Bouchaala, A., Nayfeh, A.H., Younis, M.I.: Frequency shifts of micro and nano cantilever beam resonators due to added masses. J. Dyn. Syst. Meas. Control Trans. ASME 138(9) (2016). https://doi.org/10.1115/1.4033075

  16. Ouakad, H.M., Younis, M.I.: Nonlinear dynamics of electrically actuated carbon nanotube resonators. J. Comput. Nonlinear Dyn. 5(1) (2010). https://doi.org/10.1115/1.4000319

  17. Jiang, H., Yu, M.F., Liu, B., Huang, Y.: Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator. Phys. Rev. Lett. 93(18) (2004). https://doi.org/10.1103/PhysRevLett.93.185501

  18. Naik, A., Buu, O., LaHaye, M.D., Armour, A.D., Clerk, A.A., Blencowe, M.P., Schwab, K.C.: Cooling a nanomechanical resonator with quantum back-action. Nature 443(7108), 193–196 (2006). https://doi.org/10.1038/nature05027

    Article  Google Scholar 

  19. Byun, K.R., Lee, K., Kwon, O.K.: Molecular dynamics simulation of cantilevered single-walled carbon nanotube resonators. J. Comput. Theor. Nanosci. 6(11), 2393–2397 (2009). https://doi.org/10.1166/jctn.2009.1296

    Article  Google Scholar 

  20. Huttel, A.K., Steele, G.A., Witkamp, B., Poot, M., Kouwenhoven, L.P., van der Zant, H.S.J.: Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 9(7), 2547–2552 (2009). https://doi.org/10.1021/nl900612h

    Article  Google Scholar 

  21. Sawaya, S., Arie, T., Akita, S.: Diameter-dependent dissipation of vibration energy of cantilevered multiwall carbon nanotubes. Nanotechnology 22(16) (2011). https://doi.org/10.1088/0957-4484/22/16/165702

  22. Vallabhaneni, A.K., Rhoads, J.F., Murthy, J.Y., Ruan, X.L.: Observation of nonclassical scaling laws in the quality factors of cantilevered carbon nanotube resonators. J. Appl. Phys. 110(3) (2011). https://doi.org/10.1063/1.3611396

  23. Laird, E.A., Pei, F., Tang, W., Steele, G.A., Kouwenhoven, L.P.: A high quality factor carbon nanotube mechanical resonator at 39 GHz. Nano Lett. 12(1), 193–197 (2012). https://doi.org/10.1021/nl203279v

    Article  Google Scholar 

  24. Kim, I.K., Lee, S.I.: Theoretical investigation of nonlinear resonances in a carbon nanotube cantilever with a tip-mass under electrostatic excitation. J. Appl. Phys. 114(10) (2013). https://doi.org/10.1063/1.4820577

  25. Liu, R.M., Wang, L.F.: Vibration of cantilevered double-walled carbon nanotubes predicted by timoshenko beam model and molecular dynamics. Int. J. Comput. Methods 12(4) (2015). https://doi.org/10.1142/s0219876215400174

  26. Hu, W.P., Deng, Z.C., Han, S.M., Zhang, W.R.: Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs. J. Comput. Phys. 235, 394–406 (2013). https://doi.org/10.1016/j.jcp.2012.10.032

    Article  MathSciNet  MATH  Google Scholar 

  27. Bridges, T.J.: Multi-symplectic structures and wave propagation. Math. Proc. Camb. Philos. Soc. 121(1), 147–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hu, W.P., Deng, Z.C.: Chaos in embedded fluid-conveying single-walled carbon nanotube under transverse harmonic load series. Nonlinear Dyn. 79(1), 325–333 (2015). https://doi.org/10.1007/s11071-014-1666-9

    Article  Google Scholar 

  29. Hu, W.P., Deng, Z.C., Wang, B., Ouyang, H.J.: Chaos in an embedded single-walled carbon nanotube. Nonlinear Dyn. 72(1–2), 389–398 (2013). https://doi.org/10.1007/s11071-012-0722-6

    Article  MathSciNet  Google Scholar 

  30. Hu, W.P., Song, M.Z., Deng, Z.C., Zou, H.L., Wei, B.Q.: Chaotic region of elastically restrained single-walled carbon nanotube. Chaos 27(2) (2017). https://doi.org/10.1063/1.4977193

  31. Hu, W.P., Song, M.Z., Deng, Z.C., Yin, T.T., Wei, B.Q.: Axial dynamic buckling analysis of embedded single-walled carbon nanotube by complex structure-preserving method. Appl. Math. Model. 52, 15–27 (2017). https://doi.org/10.1016/j.apm.2017.06.040

    Article  MathSciNet  Google Scholar 

  32. Hu, W.P., Deng, Z.C., Yin, T.T.: Almost structure-preserving analysis for weakly linear damping nonlinear Schrödinger equation with periodic perturbation. Commun. Nonlinear Sci. Numer. Simul. 42, 298–312 (2017). https://doi.org/10.1016/j.cnsns.2016.05.024

  33. Li, L., Hu, Y.J.: Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015). https://doi.org/10.1016/j.ijengsci.2015.08.013

  34. Hamilton, W.R.: On a general method in dynamics. Philos. Trans. R. Soc. Lond. 124, 247–308 (1834)

    Article  Google Scholar 

  35. Feng, K.: Difference-schemes for Hamiltonian-formalism and symplectic-geometry. J. Comput. Math. 4(3), 279–289 (1986)

    MathSciNet  MATH  Google Scholar 

  36. Laurie, D.P.: Calculation of Gauss–Kronrod quadrature rules. Math. Comput. 66(219), 1133–1145 (1997). https://doi.org/10.2307/2153763

    Article  MathSciNet  MATH  Google Scholar 

  37. Calvetti, D., Golub, G.H., Gragg, W.B., Reichel, L.: Computation of Gauss–Kronrod quadrature rules. Math. Comput. 69(231), 1035–1052 (2000). https://doi.org/10.2307/2585013

    Article  MathSciNet  MATH  Google Scholar 

  38. Hu, W.P., Li, Q.j., Jiang, X.H., Deng, Z.C.: Coupling dynamic behaviors of spatial flexible beam with weak damping. Int. J. Numer. Methods Eng. (2017). https://doi.org/10.1002/nme.5477

  39. Hu, W.P., Song, M.Z., Deng, Z.C.: Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system. J. Sound Vib. 412, 58–73 (2018). https://doi.org/10.1016/j.jsv.2017.09.032

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor H. Ouyang of the University of Liverpool for several good suggestions. The research is supported by the National Natural Science Foundation of China (11672241 and 11372253), the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201643) and the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment (GZ1605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weipeng Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Song, M., Yin, T. et al. Energy dissipation of damping cantilevered single-walled carbon nanotube oscillator. Nonlinear Dyn 91, 767–776 (2018). https://doi.org/10.1007/s11071-017-3843-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3843-0

Keywords

Navigation