Skip to main content
Log in

Analysis of carbon-based nanomaterials using Raman spectroscopy: principles and case studies

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The advent of new instrumentation techniques provides the breakthrough for Raman spectroscopy to establish as powerful non-invasive method for material characterization. In recent years, carbon-based materials and particularly nanomaterials emerged as the subject of enormous scientific and technological attention due to their outstanding mechanical, electrical and thermal properties. We present a brief account on the unprecedented opportunity of Raman spectroscopy for insight into the behaviour of electrons and phonons in carbon nanomaterials. Raman scattering techniques have been highlighted which can be exclusively used to understand the critical dependence of the ratio of sp2 (graphite-like) to sp3 (diamond-like) bonds with the physical properties of honeycomb carbon lattice. The different case studies carried out in our laboratory were included to underline the fact that the Raman is the backbone of non-destructive, fast and high-resolution characterization tool to provide the maximum structural features, lattice dynamics and electronic information in carbon materials at various length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The datasets used and analysed during the case studies are available from the corresponding author on reasonable request. The authors declare that all other data supporting the findings of this study are available within the paper.

References

  1. Jayaraman A (ed) 1989 Chandrasekhara Venkata Raman—a memoir (Bengaluru, India: Indian Academy of Sciences)

    Google Scholar 

  2. Venkataraman G (ed) 1989 Journey into light: life and science of C V Raman (Bengaluru, India: Indian Academy of Sciences)

    Google Scholar 

  3. Krishnan R S and Shankar R K 1981 J. Raman Spectrosc. 10 1

    Article  CAS  Google Scholar 

  4. Singh R 2002 Phys. Perspect. 4 399

    Article  Google Scholar 

  5. Peticolas W L 1972 Annu. Rev. Phys. Chem. 23 93

    Article  CAS  Google Scholar 

  6. Singh R and Riess F 1998 Curr. Sci. India 75 965

    Google Scholar 

  7. Radhakrishna B P 2010 J. Geol. Soc. India 75 347

    Article  Google Scholar 

  8. Hendra P J and Vear C J 1970 Analyst 95 321

    Article  CAS  Google Scholar 

  9. Loudon R 1964 Adv. Phys. 13 423

    Article  CAS  Google Scholar 

  10. Jones R R, Hooper D C, Zhang L, Wolverson D and Valev V K 2019 Nanoscale Res. Lett. 14 231

    Article  Google Scholar 

  11. Rangan S, Schulze H G, Vardaki M Z, Blades M W, Piret J M and Turner R F B 2020 Analyst 145 2070

    Article  CAS  Google Scholar 

  12. Loudon R 1963 Proc. Math. Phys. Eng. Sci. 275 218

    CAS  Google Scholar 

  13. Levine B and Bethea C 1980 IEEE J. Quantum Electron. 16 85

    Article  Google Scholar 

  14. Cheng J X and Xie X S 2004 J. Phys. Chem. B 108 827

    Article  CAS  Google Scholar 

  15. Ziegler L D 1990 J. Raman Spectrosc. 21 769

    Article  CAS  Google Scholar 

  16. Camp C H and Cicerone M T 2015 Nat. Photon. 9 295

    Article  CAS  Google Scholar 

  17. Wu Y, Wen L and Zhu Y 2003 Opt. Lett. 28 631

    Article  CAS  Google Scholar 

  18. Asher S A 1993 Anal. Chem. 65 201

    Article  Google Scholar 

  19. Spiro T G 1974 Acc. Chem. Res. 7 339

    Article  CAS  Google Scholar 

  20. McNay G, Eustace D, Smith W E, Faulds K and Graham D 2011 Appl. Spectrosc. 65 825

    Article  CAS  Google Scholar 

  21. Nie S and Emory S R 1997 Science 275 1102

    Article  CAS  Google Scholar 

  22. Kneipp J, Kneippa H and Kneipp K 2008 Chem. Soc. Rev. 37 1052

    Article  CAS  Google Scholar 

  23. Fleischmann M, Hendra P J and McQuillan A J 1974 Chem. Phys. Lett. 26 163

    Article  CAS  Google Scholar 

  24. Moskovits M 2005 J. Raman Spectrosc. 36 485

    Article  CAS  Google Scholar 

  25. Haynes C L, McFarland A D and Van Duyne R P 2005 Anal. Chem. 77 338

    Article  Google Scholar 

  26. Fan M, Andrade G F S and Brolo A G 2011 Anal. Chim. Acta 693 7

    Article  CAS  Google Scholar 

  27. Futamata M, Maruyama Y and Ishikawa M 2003 J. Phys. Chem. B 107 7607

    Article  CAS  Google Scholar 

  28. Kumar N, Weckhuysen B M, Wain A J and Pollard A J 2019 Nat. Protoc. 14 1169

    Article  CAS  Google Scholar 

  29. Schmid T, Opilik L, Blum C and Zenobi R 2013 Angew. Chem. Int. Ed. 52 5940

    Article  CAS  Google Scholar 

  30. Kleinman S L, Frontiera R R, Henry A I, Dieringer J A and Van Duyne R P 2013 Phys. Chem. Chem. Phys. 15 21

    Article  CAS  Google Scholar 

  31. Gouadec G and Colomban P 2007 Prog. Cryst. Growth Charact. Mater. 53 1

    Article  CAS  Google Scholar 

  32. Popović Z V, Mitrović Z D, Šćepanović M, Brojčin M G and Aškrabić S 2011 Ann. Phys. 523 62

    Article  Google Scholar 

  33. Drescher D and Kneipp J 2012 Chem. Soc. Rev. 41 5780

    Article  CAS  Google Scholar 

  34. Bokobza L, Bruneel J L and Couzi M 2014 Vib. Spectrosc. 74 57

    Article  CAS  Google Scholar 

  35. Wang Y, Alsmeyer D C and McCreery R L 1990 Chem. Mater. 2 557

    Article  CAS  Google Scholar 

  36. Reich S and Thomsen C 2004 Phil. Trans. R. Soc. A 362 2271

    Article  CAS  Google Scholar 

  37. Dresselhaus M S, Jorio A and Saito R 2010 Annu. Rev. Condens. Matter Phys. 1 89

    Article  CAS  Google Scholar 

  38. Ferrari A C and Robertson J 2004 Philos. Trans. A Math. Phys. Eng. Sci. 362 2477

    Article  CAS  Google Scholar 

  39. Ferrari A C 2007 Solid State Commun. 143 47

    Article  CAS  Google Scholar 

  40. Shimada T, Sugai T, Fantini C, Souza M, Cançado L G, Jorio A et al 2005 Carbon 43 1049

    Article  CAS  Google Scholar 

  41. Livneh T, Haslett T L and Moskovits M 2002 Phys. Rev. B 66 195110

    Article  Google Scholar 

  42. Kuzmany H, Plank W, Hulman M, Kramberger C, Grüneis A, Pichler T et al 2001 Eur. Phys. J. B 22 307

  43. Kürti J, Zólyomi V, Kertesz M and Sun G 2003 New J. Phys. 5 125

    Article  Google Scholar 

  44. Tiwari N, Agarwal N, Roy D, Mukhopadhyay K and Eswara Prasad N 2017 Ind. Eng. Chem. 56 672

    Article  CAS  Google Scholar 

  45. Punetha V D, Rana S, Yoo H J, Chaurasia A, McLeskey J T, Ramasamy M S et al 2017 Prog. Polym. Sci. 67 1

    Article  CAS  Google Scholar 

  46. Roy D, Tiwari N, Mukhopadhyay K and Saxena A K 2014 Polymer 55 583

    Article  CAS  Google Scholar 

  47. Roy D, Tiwari N, Mukhopadhyay K and Saxena A K 2014 ChemPhysChem 15 3839

    Article  CAS  Google Scholar 

  48. Mann J A, López J R, Abruña H D and Dichtel W R 2011 J. Am. Chem. Soc. 133 17614

    Article  CAS  Google Scholar 

  49. Bilalis P, Katsigiannopoulos D, Avgeropoulos A and Sakellariou G 2014 RSC Adv. 4 2911

    Article  CAS  Google Scholar 

  50. Roy D, Tiwari N, Gupta M, Mukhopadhyay K and Saxena A K 2015 J. Phys. Chem. C 119 716

    Article  CAS  Google Scholar 

  51. Choi W, Lahiri I, Seelaboyina R and Kang Y S 2010 Crit. Rev. Solid State Mater. Sci. 35 52

    Article  CAS  Google Scholar 

  52. Mohan V B, Lau K T, Hui D and Bhattacharyya D 2018 Compos. Part B: Eng. 142 200

    Article  CAS  Google Scholar 

  53. Agarwal N, Bhattacharyya R, Roy D, Mukhopadhyay K and Eswara Prasad N 2017 Phys. Chem. Chem. Phys. 19 16287

    Article  Google Scholar 

  54. Roy D, Tiwari N, Mukhopadhyay K and Saxena A K 2014 Nanotechnology 25 115701

    Article  Google Scholar 

  55. Srivastava A K, Awasthi P, Kanojia S, Neeraj N S, Sharma P, Mukhopadhyay K et al 2018 Defence Sci. J. 68 98

    Article  CAS  Google Scholar 

  56. Tiwari N, Pandey N, Roy D, Mukhopadhyay K and Eswara Prasad N 2016 Nanotechnology 27 205604

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the help and support of the scientists, research scholars and the staff members of the Directorate of Nanomaterials and Technologies, DMSRDE, for the discussion and suggestions. We are grateful to the Director, DMSRDE, Kanpur, for help, support, guidance and permission to publish our experimental findings.

Funding

The bulk amounts of the case studies were carried out in the projects funded by Defence Research and Development Organization (DRDO), New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

DR conceptualized and designed the case studies; acquisition of data was carried out by SK; SK, DR, KM and NEP analysed, interpreted the data and drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Debmalya Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, D., Kanojia, S., Mukhopadhyay, K. et al. Analysis of carbon-based nanomaterials using Raman spectroscopy: principles and case studies. Bull Mater Sci 44, 31 (2021). https://doi.org/10.1007/s12034-020-02327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02327-9

Keywords

Navigation