Skip to main content
Log in

Characterization of the structure and photoluminescence properties of tetragonal structure La0.995Pr0.005VO4 phosphor via a post heat treatment

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A hydrothermal method is used to prepare La0.995Pr0.005VO4 nano-crystal phosphors, which are then post heat treated at 500–800°C for 4 h. The X-ray diffraction patterns show that the La0.995Pr0.005VO4 phosphors retain a tetragonal structure at a lower temperature (500 and 600°C). When the temperature is greater than 600°C, the structure of La0.995Pr0.005VO4 changes from the t-zircon-type to the m-monazite-type lanthanum orthovanadates (LaVO4) structure. The temperature at which the structure changes (Tst) is measured using differential scanning calorimetry as 625°C. The scanning electron microscopy results show that the surface morphology of the phosphor particles is granular and has a uniform distribution. The particle size increases from 0.1 to 2.5 μm as the temperature is increased. The excitation spectra show that the absorption behaviour for the t-zircon-type and the m-monazite-type La0.995Pr0.005VO4 phosphor is not significantly different, but there is a little red shift due to host absorption for La0.995Pr0.005VO4 with an m-monazite-type structure. Under excitation at 315 nm, the main emission band retains the characteristics of Pr3+ ion-doped LaVO4 phosphor, which is attributed to the host luminescent and the 1D2 → 3H4, 3P0 → 3H6 electron transition of the Pr3+ ion. As the temperature for the heat treatment increases, the intensity of the excitation and emission peaks has a maximum value for a temperature of 600°C and the intensity decreases as the temperature increases further, because the structure of La0.995Pr0.005VO4 phosphors changes from tetragonal to monoclinic when the heat-treatment temperature exceeds 600°C. This demonstrates that the tetragonal structure is better than the monoclinic structure for LaVO4 if it is used as a host material for phosphor applications. The colour tones are initially in the white light region for La0.995Pr0.005VO4 phosphors heat treatment at 500 and 600°C. When the heat-treatment temperature is greater than 600°C, the colour tones shift to the orange light region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Chang C K and Chen T M 2007 Appl. Phys. Lett. 91 081902

    Article  Google Scholar 

  2. Liu X M, Lin C K and Lin J 2007 Appl. Phys. Lett. 90 081904

    Article  Google Scholar 

  3. Liang C H, Chang Y C and Chang Y S 2008 Appl. Phys. Lett. 93 211902

    Article  Google Scholar 

  4. Blasse G and Grabmaier B C 1994 Luminescent materials (Berlin: Springer) p 134

  5. Lin Y F, Chang Y H, Chang Y S, Tsai B S and Li Y C 2006 J. Electrochem. Soc. 153 G543

    Article  CAS  Google Scholar 

  6. Nugent L J, Baybarz R D, Bernett J L and Ryan J L 1973 J. Phys. Chem. 77 1528

    Article  CAS  Google Scholar 

  7. Yagoub M Y A, Swart H C, Bergman P and Coetsee E 2016 AIP Adv. 6 025204

    Article  Google Scholar 

  8. Sugar J 1965 J. Opt. Soc. Am. 55 1058

    Article  Google Scholar 

  9. Sun L, Zhao X, Li Y, Li P, Sun H, Cheng X et al 2010 J. Appl. Phys. 108 093519

    Article  Google Scholar 

  10. Zhang F, Li G Q, Zhang W F and Yan Y L 2015 Inorg. Chem. 54 7325

    Article  CAS  Google Scholar 

  11. Terada Y, Shimamura K, Kochurikhin V V, Barashov L V, Ivanov M A and Fukuda T 1996 J. Cryst. Grow. 167 369

    Article  CAS  Google Scholar 

  12. Huignard A, Gacoin T and Boilot J P 2000 Chem. Mater. 12 1090

    Article  CAS  Google Scholar 

  13. Shao B, Zhao Q, Guo N, Jia Y, Lv W, Jiao M et al 2014 CrystEngComm 16 152

    Article  CAS  Google Scholar 

  14. Fan W L, Zhao W, You L P, Song X Y, Zhang W M, Yu H Y et al 2004 J. Solid State Chem. 177 4399

    Article  CAS  Google Scholar 

  15. Zhang H W, Fu X Y, Niu S Y, Sun G Q and Xin Q 2004 Solid State Commun. 132 527

    Article  CAS  Google Scholar 

  16. Hsu C and Powell R C 1975 J. Lumin. 10 273

    Article  CAS  Google Scholar 

  17. Chang C R 2017 Master’s thesis, Department of Electronic Engineering, National Formosa University, Huwei, Yunlin, Taiwan

  18. Stouwdam J W, Raudsepp M and Van Veggel F C J M 2005 Langmuir 21 7003

    Article  CAS  Google Scholar 

  19. Hay R S, Mogilevsky P and Boakye E 2013 Acta Mater. 61 6933

    Article  CAS  Google Scholar 

  20. Clavier N, Podor R and Dacheux N 2011 J. Eur. Ceram. Soc. 31 941

    Article  CAS  Google Scholar 

  21. Hay R S, Fair G, Boakye E, Mogilevsky P, Parthasarathy T, Ahrens M et al 2011 Ceram. Eng. Sci. Proc. 32 15

    Article  CAS  Google Scholar 

  22. Ni Y X, Hugues J M and Mariano A N 1995 Am. Mineral. 80 21

    Article  CAS  Google Scholar 

  23. Yuan H S, Wang K, Wang C, Zhou B, Yang K, Liu J et al 2015 J. Phys. Chem. C 119 8364

    Article  CAS  Google Scholar 

  24. Ermakova O, López-Solano J, Minikayev R, Carlson S, Kaminska A, Glowacki M et al 2014 Acta Crystallogr. Sect. B 70 533

    Article  CAS  Google Scholar 

  25. Oka Y, Yao T and Yamamoto N 2000 J. Solid State Chem. 152 486

    Article  CAS  Google Scholar 

  26. Rice C and Robinson W 1975 Acta Crystallogr. Sect. B 32 2232

    Article  Google Scholar 

  27. Mao H K, Xu J and Bell P 1986 J. Geophys. Res. 91 4673

    Article  CAS  Google Scholar 

  28. Chang Y S, Shi Z R, Tsai Y Y, Wu S and Chen H L 2011 Opt. Mater. 33 375

    Article  CAS  Google Scholar 

  29. Yu M, Lin J, Wang Z, Fu J, Wang S, Zhang H J et al 2002 Chem. Mater. 14 2224

    Google Scholar 

  30. Chang Y S, Huang F M, Tsai Y Y and Teoh L G 2009 J. Lumin. 129 1181

    Article  CAS  Google Scholar 

  31. Donega C D M, Meijerink A and Blasse G 1995 J. Phys. Chem. Solids 56 673

    Article  Google Scholar 

  32. Hoefdraad H E and Blasse G 1975 Phys. Stat. Sol. A 29 K95

    Article  CAS  Google Scholar 

  33. Dorenbos P 2000 J. Lumin. 91 91

    Article  CAS  Google Scholar 

  34. Park W J, Jung M K, Im S J and Yoon D H 2008 Colloid. Surf. A 313–314 373

    Article  Google Scholar 

  35. Weber M J 1993 Phys. Rev. B 8 54

    Article  Google Scholar 

  36. He Y M, Wang Y J, Zhao L H, Wu X T and Wu Y 2011 J. Mol. Catal. 337 61

    Article  CAS  Google Scholar 

  37. Luo Y, Xia Z G, Lei B F and Liu Y G 2013 RSC Adv. 3 22206

    Article  CAS  Google Scholar 

  38. Jia C J, Sun L D, Luo F, Jiang X C, Wei L H and Yan C H 2004 Appl. Phys. Lett. 84 530

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Ministry Science and Technology of the Republic of China for financially supporting this project under Grant MOST 105-2221-E-150-055-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yee Shin Chang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H.L., Teoh, L.G., Liu, K.T. et al. Characterization of the structure and photoluminescence properties of tetragonal structure La0.995Pr0.005VO4 phosphor via a post heat treatment. Bull Mater Sci 44, 24 (2021). https://doi.org/10.1007/s12034-020-02286-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02286-1

Keywords

Navigation