Skip to main content
Log in

Effect of synthesis method on the structural and optical properties of blue-excitable La2−xPrx(MoO4)3 phosphors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Structural, optical and photoluminescent properties of La2−xPrx(MoO4)3 phosphors with different doping concentrations of Pr3+, synthesized by conventional solid-state and solution combustion routes were studied. X-ray diffraction studies of compounds synthesized through conventional solid-state ceramic route confirm that all samples crystallized in monoclinic La2(MoO4)3 structure with c2/c space group, while combustion synthesized compounds show the existence of two different crystal environments. Analysis of UV–visible diffuse reflectance spectra (DRS) shows characteristics of absorption bands in blue and red regions for Pr3+ substituted La2(MoO4)3 samples, synthesized by both methods. The calculated band gap from the DR spectrum showed an inverse dependence with Pr3+ doping concentration for solid-state synthesized La2−xPrx(MoO4)3 samples, while for combustion synthesized La2−xPrx(MoO4)3 compounds the variation of band gap with concentration is not monotonous. The photoluminescence emission spectrum of blue excited La2−xPrx(MoO4)3 phosphors synthesized by both routes showed similar multicoloured emission bands. Maximum emission intensity was observed for Pr3+ concentration of x = 0.05 in both synthesis methods. The exchange interaction between nearest activator ions leads to concentration quenching of luminescence for solid-state synthesized La2−xPrx(MoO4)3 compounds and dipole–dipole interaction for combustion synthesized La2−xPrx(MoO4)3 compounds. The average emission colour of the blue excited La2−xPrx(MoO4)3 phosphors lies in the yellow–orange region. The CCT values lie in the warm light region and the luminescence lifetime of 8 µs for red emission peak showed promising applications requiring fast switching response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. J. McKittrick, L.E. Shea-Rohwer, Review: down conversion materials for solid-state lighting. J. Am. Ceram. Soc. 97(5), 1327–1352 (2014). https://doi.org/10.1111/jace.12943

    Article  Google Scholar 

  2. M.-H. Fang, J.L. Leaño, R.-S. Liu, Control of narrow-band emission in phosphor materials for application in light-emitting diodes. ACS Energy Lett. 3(10), 2573–2586 (2018). https://doi.org/10.1021/acsenergylett.8b01408

    Article  Google Scholar 

  3. L. Wang, R.-J. Xie, T. Suehiro, T. Takeda, N. Hirosaki, Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chem. Rev. 118(4), 1951–2009 (2018). https://doi.org/10.1021/acs.chemrev.7b00284

    Article  Google Scholar 

  4. S. Nakamura, T. Mukai, M. Senoh, Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64(13), 1687–1689 (1994). https://doi.org/10.1063/1.111832

    Article  ADS  Google Scholar 

  5. C.C. Lin, R.S. Liu, Y.S. Tang, S.F. Hu, Full-color and thermally stable KSrPO4: Ln (Ln=Eu, Tb, Sm) phosphors for white-light-emitting diodes. J. Electrochem. Soc. 155(9), J248–J251 (2008). https://doi.org/10.1149/1.2953591

    Article  Google Scholar 

  6. T. Nishida, T. Ban, N. Kobayashi, High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors. Appl. Phys. Lett. 82(22), 3817–3819 (2003). https://doi.org/10.1063/1.1580649

    Article  ADS  Google Scholar 

  7. M.-H. Fang, Z. Bao, W.-T. Huang, R.-S. Liu, Evolutionary generation of phosphor materials and their progress in future applications for light-emitting diodes. Chem. Rev. 122(13), 11474–11513 (2022). https://doi.org/10.1021/acs.chemrev.1c00952

    Article  Google Scholar 

  8. X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Self-propagating high temperature synthesis of yellow-emitting Ba2Si5N8:Eu2+ phosphors for white light-emitting diodes. Appl. Phys. Lett. 91(4), 041908-1-041908–3 (2007). https://doi.org/10.1063/1.2760038

    Article  ADS  Google Scholar 

  9. L.Đ Far, T. Dramićanin, M. Medić, Z. Ristić, J. Periša, V. Đorđević, Ž Antić, M.D. Dramićanin, Emission color tunability of dysprosium-activated YNbO4–LuNbO4-mixed phosphors. Appl. Phys. A 130(2), 107 (2024). https://doi.org/10.1007/s00339-023-07271-z

    Article  ADS  Google Scholar 

  10. C.C. Lin, R.-S. Liu, Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett. 2(11), 1268–1277 (2011). https://doi.org/10.1021/jz2002452

    Article  Google Scholar 

  11. B. Xu, J. Liu, C. Song, H. Luo, Y. Jie Peng, X. Yu, Synthesis and tunable luminescent properties of red phosphor Li1−mAgmLa0.99−nYnPr0.01(MoO4)2 with blue excitation for white LEDs. J. Am. Ceram. Soc. 95(1), 250–256 (2012). https://doi.org/10.1111/j.1551-2916.2011.04764.x

    Article  Google Scholar 

  12. Y. Liang, F. Liu, Y. Chen, X. Wang, K. Sun, Z. Pan, Red/near-infrared/short-wave infrared multi-band persistent luminescence in Pr3+-doped persistent phosphors. Dalton Trans. 46, 11149–11153 (2017). https://doi.org/10.1039/C7DT02271A

    Article  Google Scholar 

  13. I. Mackeviciute, A. Linkeviciute, A. Katelnikovas, Synthesis and optical properties of Y2Mo4O15 doped by Pr3+. J. Lumin. 190, 525–530 (2017). https://doi.org/10.1016/j.jlumin.2017.06.014

    Article  Google Scholar 

  14. A.M. Srivastava, Inter- and intraconfigurational optical transitions of the Pr3+ ion for application in lighting and scintillator technologies. J. Lumin. 129(12), 1419–1421 (2009). https://doi.org/10.1016/j.jlumin.2009.01.041

    Article  Google Scholar 

  15. J. Grigorjevaite, A. Katelnikovas, Synthesis and optical properties investigation of blue-excitable red-emitting K2Bi(PO4) (MoO4):Pr3+ powders. J. Mater. Res. Technol. 9(6), 15779–15787 (2020). https://doi.org/10.1016/j.jmrt.2020.11.054

    Article  Google Scholar 

  16. H. Lee, W.J. Chung, W. BinIm, Pr3+-doped oxyfluoride glass ceramic as a white LED color converter wide color gamut. J. Lumin. 236, 118064 (2021). https://doi.org/10.1016/j.jlumin.2021.118064

    Article  Google Scholar 

  17. T. Kyômen, R. Sakamoto, N. Sakamoto, S. Kunugi, M. Itoh, Photoluminescence properties of Pr-doped (Ca, Sr, Ba)TiO3. Chem. Mater. 17(12), 3200–3204 (2005). https://doi.org/10.1021/cm0403715

    Article  Google Scholar 

  18. P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, M. Bettinelli, Making red emitting phosphors with Pr3+. Opt. Mater. 28(1), 9–13 (2006). https://doi.org/10.1016/j.optmat.2004.09.027

    Article  ADS  Google Scholar 

  19. G.B. Nair, H.C. Swart, S.J. Dhoble, A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): phosphor synthesis, device fabrication and characterization. Prog. Mater. Sci. 109, 100622 (2020). https://doi.org/10.1016/j.pmatsci.2019.100622

    Article  Google Scholar 

  20. G. Benoît, J. Véronique, A. Arnaud, G. Alain, Luminescence properties of tungstate’s and molybdates phosphors: illustration on ALn(MO4)2 compounds (A = alkaline cation, Ln = lanthanides, M = W, Mo). Solid State Sci. 13(2), 460–467 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.12.013

    Article  ADS  Google Scholar 

  21. Y. Tian, X. Qi, X. Wu, R. Hua, B. Chen, Luminescent properties of Y2(MoO4)3: Eu3+ red phosphors with flowerlike shape prepared via coprecipitation method. J. Phys. Chem. C 113(24), 10767–10772 (2009). https://doi.org/10.1021/jp901053q.fo

    Article  Google Scholar 

  22. R. Satheesh, M. Venugopal, H.P. Kumar, Influence of structural variation on the optical properties of Y2−xSmxMo3O12 phosphors. J. Mater. Sci. Mater. Electron. 33, 16837–16855 (2022). https://doi.org/10.1007/s10854-022-08554-6

    Article  Google Scholar 

  23. R. Satheesh, Meenu Venugopal, S.P. Anusree, V.S. Dhanya, H. PadmaKumar, Optical characterization of rare-earth activated La2xLnx (MoO4)3 (Ln=Dy, Sm) phosphors. J. Mol. Struct. 1281, 135111 (2023). https://doi.org/10.1016/j.molstruc.2023.135111

    Article  Google Scholar 

  24. N. Huang, G. Lu, B. Bai, H. Zhao, W. Yao, C. Cao, Y. Li, A. Xie, Preparation, crystal structure, and photoluminescence properties of Tb3+ activated Lu2(MoO4)3 green-emitting phosphors. J. Lumin. 269, 120475 (2024). https://doi.org/10.1016/j.jlumin.2024.120475

    Article  Google Scholar 

  25. M. Tsvetkov, D. Elenkova, M. Milanova, Luminescence properties of Gd2(MoO4)3 modified with Sm(III) and Tb(III) for potential LED applications. Crystals (Basel) 12(1), 120 (2022). https://doi.org/10.3390/cryst12010120

    Article  Google Scholar 

  26. E. Pinel, P. Boutinaud, R. Mahiou, Using a structural criterion for the selection of red-emitting oxide-based compounds containing Pr3+. J. Alloys Compd. 374(1–2), 165–168 (2004). https://doi.org/10.1016/j.jallcom.2003.11.084

    Article  Google Scholar 

  27. Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, H. Yu, Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor. J. Appl. Phys. 109(5), 053511 (2011). https://doi.org/10.1063/1.3551584

    Article  ADS  Google Scholar 

  28. C. Guo, T. Chen, L. Luan, W. Zhang, D. Huang, Luminescent properties of R2(MoO4)3:Eu3+ (R=La, Y, Gd) phosphors prepared by sol–gel process. J. Phys. Chem. Solids 69(8), 1905–1911 (2008). https://doi.org/10.1016/j.jpcs.2008.01.021

    Article  ADS  Google Scholar 

  29. D. Marrero-López, P. Núñez, M. Abril, V. Lavín, U.R. Rodríguez-Mendoza, V.D. Rodríguez, Synthesis, electrical properties, and optical characterization of Eu3+-doped La2Mo2O9 nanocrystalline phosphors. J. Non-Cryst. Solids 345–346, 377–381 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.08.047

    Article  ADS  Google Scholar 

  30. M.-G. Ma, K. Yao, F. Deng, Hydrothermal synthesis and characterization of hierarchically nanostructured La2(MoO4)3. Mater. Lett. 121, 70–73 (2014). https://doi.org/10.1016/j.matlet.2014.01.131

    Article  Google Scholar 

  31. M.L. Myrick, M.N. Simcock, M. Baranowski, H. Brooke, S.L. Morgan, J.N. McCutcheon, The Kubelka–Munk diffuse reflectance formula revisited. Appl. Spectrosc. Rev. 46(2), 140–165 (2011). https://doi.org/10.1080/05704928.2010.537004

    Article  ADS  Google Scholar 

  32. A.M. Pires, M.R. Davolos, Luminescence of europium(III) and manganese(II) in barium and zinc orthosilicate. Chem. Mater. 13(1), 21–27 (2001). https://doi.org/10.1021/cm000063g

    Article  Google Scholar 

  33. T. Wang, B. Gao, J. Li, Z. Wang, P. Li, Achieving luminescence of Sr3Ga1.98In0.02Ge4O14:0.03Cr3+ via [In3+] substitution [Ga3+] and its application to NIR pc-LED in non-destructive testing. Molecules 28(24), 8059 (2023). https://doi.org/10.3390/molecules28248059

    Article  Google Scholar 

  34. R. Stankeviciute, A. Zalga, Sol–gel synthesis, crystal structure, surface morphology, and optical properties of Eu2O3-doped La2Mo3O12 ceramic. J. Therm. Anal. Calorim. 118, 925–935 (2014). https://doi.org/10.1007/s10973-014-3882-4

    Article  Google Scholar 

  35. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 49(10), 4424–4442 (1968). https://doi.org/10.1063/1.1669893

    Article  ADS  Google Scholar 

  36. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (b) 15(2), 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  ADS  Google Scholar 

  37. M. Venugopal, H.P. Kumar, R. Satheesh, R. Jayakrishnan, Enhanced photoluminescence in CaZr0.9SmxDy(0.1x)O3 perovskites by Mg2+ and Al3+ co-doping for WLED applications. Mater. Res. Express 6, 076201 (2019). https://doi.org/10.1088/2053-1591/ab0dbd

    Article  ADS  Google Scholar 

  38. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93(3), 632–633 (1954). https://doi.org/10.1103/PhysRev.93.632

    Article  ADS  Google Scholar 

  39. H. Dornauf, J. Heber, Concentration-dependent fluorescence-quenching in La1−xPrxP5O14. J. Lumin. 22(1), 1–16 (1980). https://doi.org/10.1016/0022-2313(80)90040-X

    Article  Google Scholar 

  40. M. Chen, Study on the structure and luminescence quenching of Pr doped Na0.5Bi4.5Ti4O15 multifunctional ceramics. J. Mater. Sci. Mater. Electron. 30, 20393–20399 (2019). https://doi.org/10.1007/s10854-019-02348-z

    Article  Google Scholar 

  41. J. Stefanska, L. Marciniak, Single-band ratiometric luminescent thermometry using Pr3+ ions emitting in yellow and red spectral ranges. Adv. Photonics Res. 2(7), 2100070 (2021). https://doi.org/10.1002/adpr.202100070

    Article  Google Scholar 

  42. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953). https://doi.org/10.1063/1.1699044

    Article  ADS  Google Scholar 

  43. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17(2), 142–144 (1992). https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

  44. P. Dang, G. Zhang, W. Yang, H. Lian, G. Li, J. Lin, Red–NIR luminescence in rare-earth and manganese ions Codoped Cs4CdBi2Cl12 vacancy-ordered quadruple perovskites. Chem. Mater. 35(4), 1640–1650 (2023). https://doi.org/10.1021/acs.chemmater.2c03246

    Article  Google Scholar 

Download references

Acknowledgements

The authors would acknowledge Mar Ivanios College; Nalanchira, Thiruvananthapuram IISER; Trivandrum, STIC; Cusat and CLIFF; University of Kerala, Karivattom for providing analysis facilities.

Author information

Authors and Affiliations

Authors

Contributions

Satheesh R: methodology, formal analysis, investigation, software, writing original draft. Anusree S. P: formal analysis, investigation; Dhanya V. S: formal analysis, investigation; H. Padma Kumar: conceptualization, validation, resources, supervision.

Corresponding author

Correspondence to H. Padma Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satheesh, R., Anusree, S.P., Dhanya, V.S. et al. Effect of synthesis method on the structural and optical properties of blue-excitable La2−xPrx(MoO4)3 phosphors. Appl. Phys. A 130, 270 (2024). https://doi.org/10.1007/s00339-024-07449-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07449-z

Keywords

Navigation